Researchers study a neutral hydrogen supershell in the Milky Way

September 24, 2018 by Tomasz Nowakowski, Phys.org report
Maximum density of the HI gas (left panel) and its thickness (right panel) based on simple conversion from HI data to the Gaussian HI gas distribution using the rotation curve. Black lines show galactocentric distances, starting from 10 kpc (the lowest line) with the 1 kpc increment. Densities are in at cm−3, thicknesses are in kpc. The supershell GS242-03+37 is clearly visible on both maps. Credit: Ehlerova and Palous, 2018.

A duo of researchers from the Czech Republic has performed a study of the neutral hydrogen supershell known as GS242-03+37, a large structure in the Milky Way galaxy. The research, presented in a paper published September 11 on arXiv.org, provides insights into the nature of this supershell and into its interactions with surroundings.

Supershells, also called superbubbles, are large cavities hundreds of light-years across containing hot gas atoms. The gaseous material in supershells, carved out by supernovae and stellar winds, is blown against surrounding interstellar medium as it is less dense than the medium.

Discovered in 1979, GS242-03+37 is a supershell located in the outer Milky Way. It is a dominant object observed in the neutral hydrogen maps of the galaxy, and its size and position make it an excellent laboratory for astronomers studying the effects of large shells on their surroundings.

Sona Ehlerova and Jan Palous from the Astronomical Institute of the Czech Academy of Sciences in Prague, Czech Republic, decided to learn more about GS242-03+37. Based on neutral hydrogen and carbon monoxide radio observations, as well as available data regarding star clusters in the area, the researchers conducted of the supershell's structure, which allowed them to determine crucial parameters of this cavity.

"We perform numerical simulations of the structure with the simplified hydrodynamical code RING, which uses the thin-shell approximation. The best fit is found by a comparison with the HI data, and then we compare the model with the distribution of star clusters near this supershell," the astronomers wrote in the paper.

Ehlerova and Palous found that GS242-03+37 is a relatively old structure when compared to other supershells. They estimate that has an age of at least 80 million years, most likely around 120 million years. According to the researchers, GS242-03+37 could survive so long in the galaxy because it is luckily placed very near the corotation radius of the spiral structure and therefore is not disturbed by the passage of the spiral arms, which could destroy the shell.

The findings detailed in the paper also put the current status of GS242-03+37 into question. The researcher calculated that the structure is not as energetic as was once thought. Therefore, it may not be a supershell in the strict "energetic" definition.

"Given all the uncertainties and approximations, we still refer to GS242-03+37 as a supershell, even though the basic model suggests its energy is lower than the minimum value of the energy of the supershell," the paper reads.

The study also suggests that there is a correlation between GS242-03+37 and the distribution of young (less than 120 million years old) . The authors of the paper found that young clusters tend to be preferentially located in walls of the supershell.

Explore further: NGC 2367: Buried in the heart of a giant

More information: GS242-03+37: a lucky survivor in the galactic gravitational field, arXiv:1809.03863 [astro-ph.GA] arxiv.org/abs/1809.03863

Related Stories

NGC 2367: Buried in the heart of a giant

July 1, 2015

This rich view of an array of colorful stars and gas was captured by the Wide Field Imager camera, on the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory in Chile. It shows a young open cluster of stars known as ...

Hubble images Milky Way's big sister

July 31, 2018

This image taken by the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 (WFC3) shows a beautiful spiral galaxy called NGC 6744. At first glance, it resembles our Milky Way albeit larger, measuring more than 200,000 ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

valeriy_polulyakh
5 / 5 (2) Sep 24, 2018
There are a lot of cosmic structures - cavities with tenuous, high temperature gas. The nomenclature of these cavities is not finally established yet, but in general there are cavities with a characteristic size of 10 pc – bubbles, about 100 pc – superbubbles, and extended up to 1 kpc or more – supershells. There are a lot of global outflows in our and other star-forming galaxies that percolate galactic disk and are streaming away in galactic halo. These are so called chimneys, fountains, winds and high velocity clouds. All of these structures have an enigmatic nature.
https://www.acade...nd_Winds

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.