Carbon nanodots do an ultrafine job with in vitro lung tissue

September 11, 2018, American Institute of Physics
Dispersion behavior and agglomeration state of carbon nanodots and LSM images of co-cultures exposed to nanodots. Credit: Estelle Durantie and Hana Barosova

Epidemiological studies have established a strong correlation between inhaling ultrafine particles from incomplete combustion and respiratory and cardiovascular diseases. Still, relatively little is known about the mechanisms behind how air particulates affect human health. New work with carbon nanodots seeks to provide the first model of how ultrafine carbon-based particles interact with the lung tissues.

An international group of researchers created a 3-D lung cell model system to investigate how carbon-based combustion byproducts behave as they interact with human epithelial . In Biointerphases, an AVS journal, the investigators discovered that the surface properties of the carbon nanodot's properties and aggregation patterns affected their distribution in a lab-grown copy of the lung's barrier layer, the epithelium. The carbon nanodots served as representatives for air pollution particles.

"Localization and quantification of inhaled carbon nanoparticles at the cellular level has been very difficult," said Barbara Rothen-Rutishauser, an author on the paper, which is part of a special focus issue of the journal Biointerphases on Women in Biointerface Science. "We now have a model fluorescent particle that can try to answer questions about the fate of in the lung."

At less than 100 nanometers in diameter, ultrafine particles have the small size and large relative surface area to wreak havoc on cells and potentially enter the bloodstream. Other groups' research has shown that ultrafine particles induce adverse effects on the lungs and cardiovascular system by increasing oxidative stress in the body.

Because of particle size, it is difficult for lab techniques to distinguish between carbon in pollutants from carbon in tissues. Therefore, little is known about surface charge and states of agglomeration, two key physical and chemical features that affect how interact with living tissues.

To begin modeling ultrafine particles, Estelle Durantie, another author of the study, turned to fluorescent nanodots doped with nitrogen and a combination of nitrogen and sulfur with different sizes and charges. The team then applied these nanodots to the top layer of a lab-grown epithelial tissue, where gas exchange typically happens in the lung.

Since regular fluorescent microscopes lack the resolution to visualize such small particles, the group used spectroscopy and UV light to detect and quantify nanodots as they migrated from the luminal compartment past their model's immune cells. As the researchers expected, charged particles tended to stick together before penetrating the gas-exchange barrier. While most of the neutrally charged nanodots passed through the tissue after only an hour, only 20 percent of the agglomerated charged particles infiltrated the epithelium.

Rothen-Rutishauser said she hopes to further improve nanodots so that they better mimic ultrafine particles. "What we're seeing is that translocation depends on aggregation state," Rothen-Rutishauser said. "We hope to continue trying out different sizes of nanodots, including other types of that get us closer to the real environment."

Explore further: Evaluating the contribution of black carbon to climate change

More information: "Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier," Biointerphases, DOI: 10.1116/1.5043373

Related Stories

Air pollution leads to cardiovascular diseases

August 23, 2018

Air pollution, and fine dust in particular, is responsible for more than four million deaths each year. Almost 60 per cent of deaths occur as a result of cardiovascular diseases. Scientists around Professor Thomas Münzel, ...

Braking news: Particles from car brakes harm lung cells

November 20, 2009

Real-life particles released by car brake pads can harm lung cells in vitro. Researchers writing in BioMed Central's open access journal Particle and Fibre Toxicology found that heavy braking, as in an emergency stop, caused ...

Exposure to ultrafine particles influences cardiac function

March 31, 2015

The adverse health effects caused by fine particles have been known for some time. In addition, ultrafine particles appear to play a significant role in cardiac function – even if an individual is exposed to these for only ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.