Bull ant venom could put the bite on pain

September 13, 2018, University of Queensland
M. gulosa. Credit: Wikipedia/CC

Venom from the giant red bull ant is helping University of Queensland scientists understand the evolution of animal toxins in work that could lead to better treatments for pain.

Researchers from UQ's Centre for Advanced Imaging and Institute for Molecular Bioscience have completed the first comprehensive study of ant , revealing toxins that stimulate the human nervous system to cause .

Dr Eivind Undheim said the venom of bees and wasps had been a subject of research for some decades, but there had been little research on ant venom.

"Ants are found on every inhabited continent on Earth, and many of us are familiar with the sting their venom can produce," he said.

"But, despite the ubiquity of , analysing their venom has been neglected by researchers, likely due to ants' relatively small size and venom yield, and also to the widespread misconception that they produce a simple acidic venom.

"Our study revealed that the venom of the giant red bull ant is composed of a suite of peptide toxins, and that these are closely related to those found in the venoms of bees and wasps.

"This discovery suggests these toxins evolved from a common ancestor gene found across the Aculeata, or "stinging wasps" part of the Hymenoptera order, which includes ants, bees, wasps and sawflies."

The giant red bull ants – Myrmecia gulosa – an Australian species with a notoriously painful sting, were collected from a single colony near the Queensland capital, Brisbane.

UQ's Dr Samuel Robinson said revealing the chemistry behind animal stings could improve understanding of pain physiology and contribute to the development of new pain treatments.

"Venoms are complex mixtures of molecules that animals use to subjugate prey and defend themselves against predators," he said.

"Defensive stings in particular are usually intensely painful, and contain toxins that directly target our pain-sensing neurons.

"That means we can use animal venoms to study the human nervous system and learn more about how pain travels through the body and how to develop compounds that block it."

The study, published in Science Advances was supported by the Australian Research Council and National Health and Medical Research Council of Australia.

Explore further: Ants surrender their venomous secrets

More information: Samuel D. Robinson et al. A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family, Science Advances (2018). DOI: 10.1126/sciadv.aau4640

Related Stories

Ants surrender their venomous secrets

September 12, 2018

Venoms produced by snails, snakes, scorpions and spiders contain numerous bioactive compounds that could lead to therapeutic drugs or insect-specific pesticides. Yet little is known about venoms produced by insects, in part ...

Why scorpion stings are so painful

August 3, 2017

(Phys.org)—A combined team of researchers from the U.S. and China has figured out why scorpion stings are so painful. In their paper published on the open access site Science Advances, the team explains how scorpion venom ...

Scorpions take sting out of pain

December 13, 2013

(Phys.org) —Australia is home to many venomous creatures and boasts some of the world's most deadly, but a particular group of venomous Aussies had been almost entirely ignored.

Recommended for you

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...

Solid-state catalysis: Fluctuations clear the way

February 18, 2019

The use of efficient catalytic agents is what makes many technical procedures feasible in the first place. Indeed, synthesis of more than 80 percent of the products generated in the chemical industry requires the input of ...

Engineered metasurfaces reflect waves in unusual directions

February 18, 2019

In our daily lives, we can find many examples of manipulation of reflected waves, such as mirrors, or reflective surfaces for sound that improve auditorium acoustics. When a wave impinges on a reflective surface with a certain ...

Design principles for peroxidase-mimicking nanozymes

February 18, 2019

Nanozymes, enzyme-like catalytic nanomaterials, are considered to be the next generation of enzyme mimics because they not only overcome natural enzymes' intrinsic limitations, but also possess unique properties in comparison ...

Sound waves let quantum systems 'talk' to one another

February 18, 2019

Researchers at the University of Chicago and Argonne National Laboratory have invented an innovative way for different types of quantum technology to "talk" to each other using sound. The study, published Feb. 11 in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.