Astronomers witness birth of new star from stellar explosion

September 12, 2018, Purdue University
Unlike most stellar explosions that fade away, supernova SN 2012au continues to shine today thanks to a powerful new pulsar. Credit: NASA, ESA, and J. DePasquale (STScI)

The explosions of stars, known as supernovae, can be so bright they outshine their host galaxies. They take months or years to fade away, and sometimes, the gaseous remains of the explosion slam into hydrogen-rich gas and temporarily get bright again—but could they remain luminous without any outside interference?

That's what Dan Milisavljevic, an assistant professor of physics and astronomy at Purdue University, believes he saw six years after "SN 2012au" exploded.

"We haven't seen an explosion of this type, at such a late timescale, remain visible unless it had some kind of interaction with hydrogen gas left behind by the star prior to explosion," he said. "But there's no spectral spike of hydrogen in the data—something else was energizing this thing."

As large stars explode, their interiors collapse down to a point at which all their particles become neutrons. If the resulting neutron star has a magnetic field and rotates fast enough, it may develop into a .

This is most likely what happened to SN 2012au, according to findings published in the Astrophysical Journal Letters.

"We know that supernova explosions produce these types of rapidly rotating neutron , but we never saw direct evidence of it at this unique time frame," Milisavljevic said. "This a key moment when the pulsar wind nebula is bright enough to act like a lightbulb illuminating the explosion's outer ejecta."

SN 2012au was already known to be extraordinary—and weird—in many ways. Although the explosion wasn't bright enough to be termed a "superluminous" supernova, it was extremely energetic and long-lasting, and dimmed in a similarly slow light curve.

Milisavljevic predicts that if researchers continue to monitor the sites of extremely bright supernovae, they might see similar transformations.

"If there truly is a pulsar or magnetar wind nebula at the center of the exploded star, it could push from the inside out and even accelerate the gas," he said. "If we return to some of these events a few years later and take careful measurements, we might observe the oxygen-rich gas racing away from the even faster."

Superluminous supernovae are a hot topic in transient astronomy. They're potential sources of gravitational waves and black holes, and astronomers think they might be related to other kinds of explosions, like gamma ray bursts and . Researchers want to understand the fundamental physics behind them, but they're difficult to observe because they're relatively rare and happen so far from Earth.

Only the next generation of telescopes, which astronomers have dubbed "Extremely Large Telescopes," will have the ability to observe these events in such detail.

"This is a fundamental process in the universe. We wouldn't be here unless this was happening," Milisavljevic said. "Many of the elements essential to life come from supernova explosions—calcium in our bones, oxygen we breathe, iron in our blood—I think it's crucial for us, as citizens of the universe, to understand this process."

Explore further: Ultraviolet light from superluminous supernova key to revealing explosion mechanism

Related Stories

Two sides of the same star

May 30, 2018

If you've ever heard of the phrase two sides of the same coin, you know it means two things that at first appear to be unrelated are actually parts of the same thing. Now, a fundamental example can be found in the deep recesses ...

Observatories combine to crack open the Crab Nebula

May 10, 2017

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very ...

Astronomers find 72 bright and fast explosions

April 2, 2018

Gone in a (cosmological) flash: a team of astronomers found 72 very bright, but quick events in a recent survey and are still struggling to explain their origin. Miika Pursiainen of the University of Southampton will present ...

Recommended for you

First to red planet will become Martians: Canada astronaut

September 22, 2018

Astronauts traveling through space on the long trip to Mars will not have the usual backup from mission control on Earth and will need to think of themselves as Martians to survive, Canada's most famous spaceman half-jokingly ...

Three NASA missions return first-light data

September 21, 2018

NASA's continued quest to explore our solar system and beyond received a boost of new information this week with three key missions proving not only that they are up and running, but that their science potential is exceptional. ...

Dwarf companion to EPIC 206011496 detected by astronomers

September 20, 2018

Using ESO's Very Large Telescope (VLT), European astronomers have uncovered the presence of an M-dwarf around the star EPIC 206011496. The newly found object is more than 60 percent less massive than our sun and is bounded ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Old_C_Code
2.3 / 5 (3) Sep 12, 2018
Why they think not mentioning it's 236 Mly away is good writing.
Hyperfuzzy
1 / 5 (2) Sep 12, 2018
How was this verified? If wavelength is always increasing; does that imply we have caught the wave, like a surfer; if it is infinite? What if ya start seeing it backward? I doubt it, cause init contains a; darn it. But, you can ..
Surveillance_Egg_Unit
3.7 / 5 (3) Sep 12, 2018
I like that - "Citizens of the Universe". We ARE the Universe and the Universe is us.

:)
hat1208
5 / 5 (2) Sep 14, 2018
@Surveillance_Egg_Unit

Could you be more pompous? We live in the universe. How can we be the universe and live in the universe?
Hyperfuzzy
1 / 5 (1) Sep 14, 2018
Yeah, no body see's it

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.