The wheat code is finally cracked

August 16, 2018, International Wheat Genome Sequencing Consortium
Wheat heads with clouds -- ready for harvest. Credit: Isabelle Caugant

Today in the international journal Science, the International Wheat Genome Sequencing Consortium (IWGSC) published a detailed description of the genome of bread wheat, the world's most widely cultivated crop. This work will pave the way for the production of wheat varieties better adapted to climate challenges, with higher yields, enhanced nutritional quality and improved sustainability.

The research article—authored by more than 200 scientists from 73 research institutions in 20 countries—presents the reference genome of the bread variety Chinese Spring. The DNA sequence ordered along the 21 wheat chromosomes is the highest quality genome sequence produced to date for wheat. It is the result of 13 years of collaborative international research.

A key crop for food security, wheat is the staple food of more than a third of the global human population and accounts for almost 20 percent of the total calories and protein consumed by humans worldwide, more than any other single food source. It also serves as an important source of vitamins and minerals.

To meet future demands of a projected world population of 9.6 billion by 2050, wheat productivity needs to increase by 1.6 per cent each year. In order to preserve biodiversity, water, and nutrient resources, the majority of this increase has to be achieved via crop and trait improvement on land currently cultivated rather than committing new land to cultivation.

With the reference genome sequence now completed, breeders have at their disposal new tools to address these challenges. They will be able to identify more rapidly genes and regulatory elements underlying complex agronomic traits such as yield, grain quality, resistance to fungal diseases, and tolerance to abiotic stress—and produce hardier .

"The wheat genome sequence lets us look inside the wheat engine," said Rudi Appels, University of Melbourne Professor and Murdoch University Professor, and AgriBio Research Fellow. "What we see is beautifully put-together to allow for variation and adaptation to different environments through selection, as well as sufficient stability to maintain basic structures for survival under various climatic conditions."

The Bread Wheat Genome Sequence -- A Tool for Breeders to Improve Wheat and Contribute to Food Security Credit: International Wheat Genome Sequencing Consortium (IWGSC)

It is expected that the availability of a high-quality reference genome sequence will boost wheat improvement over the next decades, with benefits similar to those observed with maize and rice after their reference sequences were produced.

"How do you thank a team of scientists who persevered and succeeded in sequencing the wheat genome and changed wheat breeding forever?" said Stephen Baenziger, University of Nebraska-Lincoln Professor and Nebraska Wheat Growers Presidential Chair. "Perhaps it is not with the words of a scientist, but with the smiles of well-nourished children and their families whose lives have been changed for the better."

Sequencing the genome was long considered an impossible task, due to its enormous size—five times larger than the human genome—and complexity—bread wheat has three sub-genomes and more than 85 percent of the genome is composed of repeated elements.

"The publication of the wheat reference genome is the culmination of the work of many individuals who came together under the banner of the IWGSC to do what was considered impossible," explained Kellye Eversole, Executive Director of the IWGSC. "The method of producing the reference sequence and the principles and policies of the consortium provide a model for sequencing large, complex plant genomes and reaffirms the importance of international collaborations for advancing food security."

The impact of the wheat reference sequence has already been significant in the scientific community, as exemplified by the publication on the same date of six additional publications describing and using the reference sequence resource, one appearing in the same issue of Science, one in Science Advances and four in Genome Biology. Moreover, more than 100 publications referencing the reference sequence have been published since the resource was made available to the scientific community in January 2017.

In addition to the sequence of the 21 chromosomes, the Science article also presents the precise location of 107,891 genes and of more than 4 million molecular markers, as well as sequence information between the genes and markers containing the regulatory elements influencing the expression of genes.

The IWGSC achieved this result by combining the resources it generated over the last 13 years using classic physical mapping methods and the most recent DNA sequencing technologies; the sequence data were assembled and ordered along the 21 chromosomes using highly efficient algorithms, and genes were identified with dedicated software programs.

Explore further: Scientists generate a high-quality wheat A genome sequence

More information: "Shifting the limits in wheat research and breeding using a fully annotated reference genome," Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aar7191

R.H. Ramírez-González el al., "The transcriptional landscape of polyploid wheat," Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aar6089

A. Juhász el al., "Genome mapping of seed-borne allergens and immune-responsive proteins in wheat," Science Advances (2018). advances.sciencemag.org/content/4/8/eaar8602

Related Stories

Scientists generate a high-quality wheat A genome sequence

May 11, 2018

Bread wheat (Triticum aestivum L.), feeding more than 35 percent of the human population and providing about 20 percent of calories and proteins consumed by humans, is a globally important crop due to its enhanced adaptability ...

Researchers to sequence two wheat chromosomes

December 2, 2015

The German Federal Ministry of Food and Agriculture announced today that it would award 1.5 million Euros to a project aimed at providing a reference sequence for two wheat chromosomes, part of the international effort to ...

Genome of wheat ancestor sequenced

November 15, 2017

Sequencing the bread wheat genome has long been considered an almost insurmountable task, due to its enormous size and complexity. Yet it is vitally important for the global food supply, providing more than 20 percent of ...

Recommended for you

How birds and insects reacted to the solar eclipse

November 14, 2018

A team of researchers with Cornell University and the University of Oxford has found that birds and insects reacted in some surprising ways to the 2017 U.S. total solar eclipse. In their paper published in the journal Biology ...

Venom shape untangles scorpion family tree

November 14, 2018

As a child growing up in Mexico, Carlos Santibanez-Lopez feared the scorpions that would often decorate the walls and ceilings of his home in search of a warm place with plenty of food.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

elevyn_11_
not rated yet Aug 17, 2018
I have literally been trying to crack the wheat riddle for 7 years, and you guys tell me know that you have solved the wheat puzzle without hints from the speaking kookaburra?? i knew that fucker was misleading me. grrr.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.