Computer simulations predict the spread of HIV

August 1, 2018, Los Alamos National Laboratory
The principal decay of paraphyletic signal. Credit: Los Alamos National Laboratory

In a recently published study in the journal Nature Microbiology, researchers at Los Alamos National Laboratory show that computer simulations can accurately predict the transmission of HIV across populations, which could aid in preventing the disease.

The simulations were consistent with actual DNA data obtained from a global public HIV database, developed and maintained by Los Alamos. The archive has more than 840,000 published HIV sequences for scientific research.

"We looked for special genetic patterns that we had seen in the simulations, and we can confirm that these patterns also hold for real data covering the entire epidemic," said Thomas Leitner, a computational biologist at Los Alamos and lead author of the study.

HIV is particularly interesting to study in this manner, Leitner noted, as the virus mutates rapidly and constantly within each infected individual. The changing "genetic signatures" of its code provide a path that researchers can follow in determining the origin and time frame of an infection, and the computer simulations are now proven to be successful in tracking and predicting the virus's movements through populations.

The rapid mutational capability of the virus is useful for the epidemiological sleuthing, but also is one of the features that makes it so difficult to tackle with a vaccine.

Leitner and Ethan Romero-Severson, the study's co-author and a Los Alamos theoretical biologist, used phylogenetic methods, examining evolutionary relationships in the virus's genetic code to evaluate how HIV is transmitted. They found that certain phylogenetic "family tree" patterns correlated to the DNA data from 955 pairs of people, in which the transmitter and recipient of the virus were known.

"These HIV transmissions had known linkage based on epidemiological information such as partner studies, mother-to-child transmission, pairs identified by contact tracing, and criminal cases," the authors write.

The robust results from the study have led to a collaboration with Colorado and Michigan state health agencies. The researchers plan to develop public health computational tools to help the agencies to track the disease and allocate resources for targeted prevention campaigns. "We hope these tools will help to hinder new infections in the future," said Leitner.

Leitner said the cutting-edge modeling tools can also be used to predict the patterns of other rapidly evolving infectious diseases.

Los Alamos has a strong history in genetic data analysis, having been the site of the original GenBank project in 1979, known at the time as the Los Alamos Sequence Database and established by Walter Goad of the Theoretical Biology and Biophysics Group.

Explore further: Analyzing genetic tree sheds new light on disease outbreaks

More information: Thomas Leitner et al, Phylogenetic patterns recover known HIV epidemiological relationships and reveal common transmission of multiple variants, Nature Microbiology (2018). DOI: 10.1038/s41564-018-0204-9

Related Stories

Analyzing genetic tree sheds new light on disease outbreaks

February 25, 2016

Scientists have a new tool for unraveling the mysteries of how diseases such as HIV move through a population, thanks to insights into phylogenetics, the creation of an organism's genetic tree and evolutionary relationships.

Charting HIV's rapidly changing journey in the body

December 12, 2008

HIV is so deadly largely because it evolves so rapidly. With a single virus as the origin of an infection, most patients will quickly come to harbor thousands of different versions of HIV, all a little bit different and all ...

Scientists Model Hepatitis C Virus

May 25, 2007

One of the most common life-threatening viral infections in the United States today is hepatitis C virus (HCV). The standard treatment is successful in only about 50 percent of treated HCV chronic patients, with no effective ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.