Scientists decode opium poppy genome

August 30, 2018, University of York
Scientists have determined the DNA code of the opium poppy genome, uncovering key steps in how the plant evolved to produce the pharmaceutical compounds used to make vital medicines. The discovery may pave the way for scientists to improve yields and the disease resistance of the medicinal plant, securing a reliable and cheap supply of the most effective drugs for pain relief and palliative care. Credit: Carol Walker

Scientists have determined the DNA code of the opium poppy genome, uncovering key steps in how the plant evolved to produce the pharmaceutical compounds used to make vital medicines.

The discovery may pave the way for scientists to improve yields and the disease resistance of the medicinal plant, securing a reliable and cheap supply of the most effective drugs for pain relief and palliative care.

The breakthrough, by researchers at the University of York in partnership with the Wellcome Sanger Institute, UK, and international colleagues, reveals the origins of the genetic pathway leading to the production of the cough suppressant noscapine and painkiller drugs morphine and codeine.

Co-corresponding author, Professor Ian Graham, from the Centre for Novel Agricultural Products, Department of Biology at the University of York, said: "Biochemists have been curious for decades about how plants have evolved to become one of the richest sources of chemical diversity on earth. Using high quality genome assembly, our study has deciphered how this has happened in opium poppy.

"At the same time this research will provide the foundation for the development of molecular plant breeding tools that can be used to ensure there is a reliable and cheap supply of the most effective painkillers available for pain relief and palliative care for societies in not just developed but also developing world countries".

Synthetic biology based approaches to manufacturing compounds such as noscapine, codeine and morphine are now being developed whereby genes from the plant are engineered into microbial systems such as yeast to enable production in industrial fermenters. However, opium poppy remains the cheapest and sole commercial source of these pharmaceutical compounds by some distance.

The scientists from the University of York and Wellcome Sanger Institute in the United Kingdom together with colleagues from Xi'an Jiaotong University and Shanghai Ocean University in China and Sun Pharmaceutical Industries (Australia) Pty Ltd, produced a high quality assembly of the 2.7 GigaBase genome sequence distributed across 11 chromosomes.

This enabled the researchers to identify a large cluster of 15 genes that encode enzymes involved in two distinct biosynthetic pathways involved in the production of both noscapine and the compounds leading to codeine and morphine.

Plants have the capacity to duplicate their genomes and when this happens there is freedom for the duplicated genes to evolve to do other things. This has allowed to develop new machinery to make a diverse array of chemical compounds that are used to defend against attack from harmful microbes and herbivores and to attract beneficial species such as bees to assist in pollination.

The genome assembly allowed the researchers to identify the ancestral genes that came together to produce the STORR gene fusion that is responsible for the first major step on the pathway to morphine and codeine. This fusion event happened before a relatively recent whole genome duplication event in the opium poppy genome 7.8 million years ago.

Co-corresponding author Professor Kai Ye from Xi'an Jiaotong University said "A highly repetitive plant genome and the intermingled evolutionary events in the past 100 million years complicated our analysis. We utilized complementary cutting-edge genome sequencing technologies with sophisticated mathematical models and analysis methods to investigate the evolutionary history of the opium poppy genome.

"It is intriguing that two biosynthetic pathways came to the same genomic region due to a series of duplication, shuffling and fusion structural events, enabling concerted production of novel metabolic compounds."

Joint first author Professor Zemin Ning from the Wellcome Trust Sanger Institute said "Combining various sequencing technologies is the key for producing a high quality assembly for opium poppy genome. With a genome size similar to humans, the main challenge for this project was to handle repeat elements which make up 70.9% of the ."

Explore further: Genetic discovery uncovers key tool for morphine production in poppies

More information: L. Guo el al., "The opium poppy genome and morphinan production," Science (2018). science.sciencemag.org/lookup/ … 1126/science.aat4096

Related Stories

Researchers discover how opium poppies synthesize morphine

July 13, 2015

Many people who live in developing countries do not have access to the pain relief that comes from morphine or other analgesics. That's because opiates are primarily derived from the opium poppy plant (Papaver somniferum) ...

Unlocking the opium poppy's biggest secret (w/ Video)

March 14, 2010

Researchers at the University of Calgary have discovered the unique genes that allow the opium poppy to make codeine and morphine, thus opening doors to alternate methods of producing these effective painkillers either by ...

Synthesis of opium alkaloids using electric current

June 28, 2018

Researchers at Johannes Gutenberg University Mainz (JGU) have mastered a nearly 50-year-old challenge of electrosynthetic chemistry, namely the electrochemical synthesis of thebaine. The chemists had set themselves this difficult ...

Recommended for you

Studying the hotbed of horizontal gene transfers

October 23, 2018

For over 200,000 years, humans and their gut microbiomes have coevolved into some of the most complex collections of living organisms on the planet. But as human lifestyles vary from the urban to rural, so do the bacterial ...

New technique promises more accurate genomes

October 23, 2018

University of Adelaide researchers have developed a new technique that will aid in a more accurate reconstruction of human genomes by determining the exact sections of the genome that come from each parent.

Researchers have discovered a new cell structure

October 23, 2018

A new structure in human cells has been discovered by researchers at Karolinska Institutet in Sweden in collaboration with colleagues in the U.K. The structure is a new type of protein complex that the cell uses to attach ...

Breakthrough test screens for all known bacterial infections

October 23, 2018

Scientists at the Center for Infection and Immunity (CII) in the Columbia University Mailman School of Public Health have developed the first diagnostic platform that can simultaneously screen for all known human pathogenic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JamesG
not rated yet Aug 30, 2018
Why are we trying to find a way to produce more opiods?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.