Iron-silica particles in ancient seawater helped cyanobacteria oxygenate Earth's oceans billions of years ago

August 7, 2018 by Katie Willis, University of Alberta
Credit: CC0 Public Domain

The oxygenation of Earth's atmosphere was thanks, in part, to iron and silica particles in ancient seawater, according to a new study by geomicrobiologists at the University of Alberta. But these results solve only part of this ancient mystery.

Early organisms called produced oxygen through oxygenic photosynthesis, resulting in the oxygenation of Earth's atmosphere. But cyanobacteria needed protection from the sun's UV in order to evolve. That's where iron and silica particles in ancient seawater come in, according to Aleksandra Mloszewska, a former Ph.D. student who conducted the research under the supervision of professors Kurt Konhauser and George Owttrim.

The research team characterized the effect of UV stress on cyanobacteria and the degree of radiation through the seawater medium through a combination of microbiological, spectroscopic, geochemical and modelling techniques. They found the presence of high silica and iron concentrations in early sea water allowed for the formation of iron-silica particles that remained suspended in the ocean for extended periods of time.

"In effect, the iron-silica particles acted as an ancient sunscreen for the cyanobacteria, protecting them from the lethal effects of direct UV exposure," explained Konhauser. "This was critical on the early Earth before a sufficiently thick ozone layer was established that could enable marine plankton to spread across the globe, as is the case today."

But that's only part of the story.

Owttrim said the accumulation of atmospheric oxygen from cyanobacterial facilitated the evolution of oxygen-based respiration and multicellular organisms, what remains a mystery is why it took so long for free oxygen to accumulate permanently in the atmosphere after the initial evolution of cyanobacteria.

While iron-silica particles would have allowed early cyanobacteria to survive, UV radiation would still have prevented their widespread growth.

"It's likely that early cyanobacteria would not have been as productive as they are today because of the effects of UV stress. Until the accumulation of sufficient cyanobacteria-derived oxygen allowed a more permanent means of protection to develop, such as an , UV stress may have played an even more important role in shaping the structure of the earliest ecosystems," explained Mloszewska.

The new findings are helping researchers understand how early cyanobacteria were affected by the high level of radiation on the early Earth as well as the environmental dynamics that affected the oxygenation history of our atmosphere.

"These findings could also be used as a case study to help us understand the potential for the emergence of life on other planets that are affected by elevated UV radiation levels, for example Earth-sized rocky planets within the habitable zones of nearby M-dwarf star systems like TRAPPIST-1, Proxima Centauri, LHS 1140 and Ross 128 among others," said Mloszewska.

The research was conducted in collaboration with colleagues at the University of Tuebingen and Yale University and was supported by the National Science and Research Council of Canada, and by the NASA Alternative Earths Astrobiology Institute.

The paper, "UV radiation limited the expansion of cyanobacteria in early marine photic environments" is published in Nature Communications.

Explore further: Experiment sheds new light on prehistoric ocean conditions

More information: Aleksandra M. Mloszewska et al. UV radiation limited the expansion of cyanobacteria in early marine photic environments, Nature Communications (2018). DOI: 10.1038/s41467-018-05520-x

Related Stories

Recommended for you

Oceans of garbage prompt war on plastics

December 15, 2018

Faced with images of turtles smothered by plastic bags, beaches carpeted with garbage and islands of trash floating in the oceans, environmentalists say the world is waking up to the need to tackle plastic pollution at the ...

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

Data from Kilauea suggests the eruption was unprecedented

December 14, 2018

A very large team of researchers from multiple institutions in the U.S. has concluded that the Kilauea volcanic eruption that occurred over this past summer represented an unprecedented volcanic event. In their paper published ...

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

Death near the shoreline, not life on land

December 13, 2018

Our understanding of when the very first animals started living on land is helped by identifying trace fossils—the tracks and trails left by ancient animals—in sedimentary rocks that were deposited on the continents.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.