Slimy chemical clues: Changing algae could alter ecosystems

July 23, 2018, Florida State University
Coralline algae have a hard skeleton and are often pink, red, purple, yellow or gray-green. Credit: Sophie McCoy

Colorful, hardened algae that dot the ocean floor from Alaska to Mexico often set the tone for which plant and invertebrate species inhabit a given ecological community.

But as rising temperatures change the chemistry of ocean waters, a Florida State University researcher said these almost rock-like organisms called are changing too. That could mean a great shift to the overall ecosystem.

"They are almost the canary in the coal mine," said Assistant Professor of Biological Science Sophie McCoy. "Their interactions with other species make them more valuable than people give them credit."

McCoy's research is published in the journal Global Change Biology.

Coralline algae have a hard skeleton and are often pink, red, purple, yellow, or gray-green. Most people wading in the sea barely notice the algae, but they release that tell invertebrates or plant species whether the environment is hospitable.

If the algae alter in some way or even disappear, the cues for a given ecological community would change in turn. McCoy's study examined how ocean acidification affects three common types of coralline algae found in the waters off of Tatoosh Island in Washington. With rising global temperatures and more carbon dioxide in the atmosphere, ocean waters have become more acidic.

Though all three types of algae are growing at the same rate they have in the past, there are some significant changes.

Of the three types of algae, one—Pseudolithophyllum whidbeyense—showed extensive changes over the past few decades as the sea water acidified. Its skeleton had more magnesium in it than calcium carbonate, meaning it was significantly weaker. The weaker the skeleton, the more likely it is to dissolve or be eaten by snails. The other two types of algae were able to maintain their skeletal integrity, but were slightly smaller in size than samples from past decades.

Historical samples from 1980-2010 were almost uniform in size and skeletal integrity, McCoy said.

"What we're seeing is how individual types react in different ways when stressed," McCoy said. "That is something to consider in the climate change research overall—some species of plants and animals may go away and others could flourish."

McCoy will now turn her attention to the relationship between the coralline and snails or other grazers to see if the grazers are experiencing changes in behavior or physical changes to their teeth and bite wounds.

Explore further: Rising CO2 levels alter species interactions

Related Stories

Ocean acidification makes coralline algae less robust

February 8, 2016

Ocean acidification (the ongoing decrease in the pH of the Earth's oceans, caused by the uptake of CO2 from the atmosphere), is affecting the formation of the skeleton of coralline algae which play an important part in marine ...

How marine life is responding to ocean acidification

June 16, 2014

(Phys.org) —A new study by researchers at the University of Bristol and Plymouth Marine Laboratory has shed light on how different species of marine organisms are reacting to ocean acidification.

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...

Solving the jet/cocoon riddle of a gravitational wave event

February 22, 2019

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.