Study reveals new geometric shape used by nature to pack cells efficiently

July 27, 2018, Lehigh University
a) Scheme representing planar columnar/cubic monolayerepithelia. Cells are simplified as prisms. b) Scheme illustrating a fold in a columnar/cubic monolayer epithelium. Cells adopt the called "bottle23 shape" that would be simplified as frusta. c) Mathematical model for an epithelial tube. d) Modelling clay figures illustrating two scutoids participating in a transition and two schemes for scutoids solids. Scutoids are characterized by having at least a vertex in a different plane to the two bases and present curvedsurfaces. e) A dorsal view of a Protaetia speciose beetle of the Cetoniidaefamily. The white lines highlight the resemblance of its scutum, scutellum and wings with the shape of the scutoids. Illustration from Dr. Nicolas Gompel, with permission. f) Three-dimensional reconstruction of the cells forming a tube. The four-cell motif (green, yellow, blue and red cells) shows an apico-basal cell intercalation. g) Detail of the apico-basal transition, showing how the blue and yellow cells contact in the apical part, but not in the basal part. The figure also shows that scutoids present concave surfaces. Credit: Luis M. Escudero (Seville University, Spain), Javier Buceta (Lehigh University, USA), Pedro Gomez-Galvez, Pablo Vicente-Munuera and scientists from Andalucian Center of Developmental Biology, and the Severo Ocha Center of Molecular Biology, among others.

As an embryo develops, tissues bend into complex three-dimensional shapes that lead to organs. Epithelial cells are the building blocks of this process forming, for example, the outer layer of skin. They also line the blood vessels and organs of all animals.

These pack together tightly. To accommodate the curving that occurs during embryonic development, it has been assumed that epithelial cells adopt either columnar or bottle-like shapes.

However, a group of scientists dug deeper into this phenomenon and discovered a new geometric in the process.

They uncovered that, during bending, epithelial cells adopt a previously undescribed shape that enables the cells to minimize energy use and maximize packing stability. The team's results will be published in Nature Communications in a paper called "Scutoids are a geometrical solution to three-dimensional packing of epithelia".

The study is the result of a United States-European Union collaboration between the teams of Luis M. Escudero (Seville University, Spain) and that of Javier Buceta (Lehigh University, USA). Pedro Gomez-Galvez and Pablo Vicente-Munuera are the first authors of this work that also includes scientists from the Andalucian Center of Developmental Biology, and the Severo Ochoa Center of Molecular Biology, among others.

Buceta and colleagues first made the discovery through computational modeling that utilized Voronoi diagramming, a tool used in a number of fields to understand geometrical organization.

"During the modeling process, the results we saw were weird," says Buceta. "Our model predicted that as the curvature of the tissue increases, columns and bottle-shapes were not the only shapes that cells may developed. To our surprise the additional shape didn't even have a name in math! One does not normally have the opportunity to name a new shape."

The group has named the new shape the "scutoid," for its resemblance to the scutellum—the posterior part of an insect thorax or midsection.

To verify the model's predictions, the group investigated the three-dimensional packing of different tissues in different animals . The experimental data confirmed that adopted shapes and three-dimensional packing motifs similar to the ones predicted by the computational model.

Using biophysical approaches, the team argues that the scutoids stabilize the three-dimensional packing and make it energetically efficient. As Buceta puts it: "We have unlocked nature's solution to achieving efficient epithelial bending."

Their findings could pave the way to understanding the three-dimensional organization of epithelial organs and lead to advancements in tissue engineering.

"In addition to this fundamental aspect of morphogenesis," they write, "the ability to engineer tissues and organs in the future critically relies on the ability to understand, and then control, the 3-D organization of cells."

Adds Buceta: "For example, if you are looking to grow artificial organs, this discovery could help you build a scaffold to encourage this kind of cell packing, accurately mimicking nature's way to efficiently develop tissues."

Explore further: Constructing new tissue shapes with light

More information: Pedro Gómez-Gálvez et al, Scutoids are a geometrical solution to three-dimensional packing of epithelia, Nature Communications (2018). DOI: 10.1038/s41467-018-05376-1

Related Stories

Constructing new tissue shapes with light

June 18, 2018

Constructing biological tissues, such as skin, muscle, or bone, in customized shapes is now one step closer. Researchers at EMBL have succeeded in guiding the folding and thus shape of tissues with optogenetics: a technique ...

Complete skin regeneration system of fish unraveled

April 24, 2018

Fish and amphibians such as newts can perfectly regenerate tissue without scar tissue in the event that they lose organs such as their limbs. Studying the mechanisms of regeneration and homeostasis of tissues has potential ...

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.