Newly discovered properties of ferroelectric crystal shed light on branch of materials

July 10, 2018, American Institute of Physics

In ferroelectric materials the crystal structure distorts, giving rise to a spontaneously formed polarization and electric field. Because of this unique property, ferroelectrics can be found in anything from ultrasound machines and diesel fuel injectors to computer memory. Ferroelectric materials are behind some of the most advanced technology available today. Findings that ferroelectricity can be observed in materials that exhibit other spontaneous transitions, like ferromagnetism, have given rise to a new class of these materials, known as hybrid improper ferroelectrics. The properties of this type of material, however, are still far from being fully understood. New findings published in Applied Physics Letters, help to shine light on these materials and indicate potential for new optoelectronic and storage applications.

A team of researchers from China has characterized one type of hybrid improper , Ca3Mn2O7. The group investigated the material's ferroelectric, magnetoelectric and optical properties. They were able to demonstrate ferroelectricity in Ca3Mn2O7 as well as coupling between its magnetism and ferroelectricity, a key property that has potential to allow for faster and more efficient bit operations in computers.

"Our work solves a long-term puzzle in this , which could push forward the frontiers and enhance the confidence to continue the research in this field," said Shuai Dong, an author on the paper.

Like batteries, for instance, ferroelectrics have positively and negatively charged poles. A major distinguishing feature of these materials, however, is that this polarization can be reversed by using an external electric field.

"This can be useful because it can be used in devices to store information as ones and zeros," Dong said. "Also, the switching of polarization can generate current, which can be used in sensors."

Unlike traditional ferroelectrics, which directly derive their properties from polar distortions in the lattice of the material's crystal, hybrid improper ferroelectrics generate polarization from a combination of nonpolar distortions.

When hybrid improper ferroelectrics were first theorized in 2011, two were proposed. In the years since, nonmagnetic Ca3Ti2O7¬ crystals were demonstrated experimentally, but a full characterization of its magnetic counterpart, Ca3Mn2O7, remained elusive.

"Multiple transitions as well as phase separations were evidenced in Ca3Mn2O7, making it more complex than the early theoretical expectations," Dong said. "This material is complex, and the leakage is serious, which prevents the direct measurement of its ferroelectricity in high temperature."

To further understand Ca3Mn2O7, Dong and his collaborators confirmed the material's ferroelectricity using pyroelectric measurements that examine its electric properties across a range of temperatures as well as measured Ca3Mn2O7's ferroelectric hysteresis loops, a method that mitigates some extrinsic leakage. Further investigation showed that Ca3Mn2O7 exhibits a weak ferromagnetism that can be modulated by an electric field.

It was found that Ca3Mn2O7, a material long-rumored to have ferroelectric and magnetoelectric properties, also exhibited strong visible light absorption in a band gap well suited for photoelectric devices. This feature of Ca3Mn2O7 might pave the way for the material to be used in anything from photovoltaic cells to light sensors with the built-in leading to larger photogenerated voltage than today's devices.

"The most surprising thing for us was that no one noticed its prominent light absorption before," Dong said.

In the future, Dong said he hopes to explore Ca3Mn2O7's photoelectric properties as well as investigate whether introducing iron to the crystal would enhance its magnetism.

Explore further: Room-temperature multiferroic thin films and their properties

More information: "Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption," Applied Physics Letters (2018). DOI: 10.1063/1.5037525

Related Stories

Room-temperature multiferroic thin films and their properties

January 8, 2018

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated ...

Flexible ferroelectrics bring two material worlds together

January 17, 2017

Until recently, "flexible ferroelectrics" could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy's (DOE) Argonne National Laboratory in collaboration ...

Recommended for you

Structure of fossil-fuel source rocks is finally decoded

November 13, 2018

The fossil fuels that provide much of the world's energy orginate in a type of rock known as kerogen, and the potential for recovering these fuels depends crucially on the size and connectedness of the rocks' internal pore ...

Atomic parity violation research reaches new milestone

November 12, 2018

A reflection always reproduces objects as a complete mirror image, rather than just its individual parts or individual parts in a completely different orientation. It's all or nothing, the mirror can't reflect just a little. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
not rated yet Jul 10, 2018
I recommend more research, you will find this info is well know by ferroelectric scientist yr's ago.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.