Nano-sized traps show promise in diagnosing pathogenic bacterial infections

July 30, 2018, McGill University
Credit: McGill University

A new type of "lab on a chip" developed by McGill University scientists has the potential to become a clinical tool capable of detecting very small quantities of disease-causing bacteria in just minutes.

The device designed by Sara Mahshid, Assistant Professor in the Department of Bioengineering at McGill, is made of nano-sized "islands," about one tenth of the thickness of a single human hair, which act as bacterial traps or snares.

In collaboration with colleagues from the University of Toronto, Professor Mahshid's team was able to demonstrate that the system is capable of analyzing very small volumes of culture media containing such as E. coli and a strain of S. aureus resistant to methicillin, an antibiotic used to treat bacterial infections.

Bacterial infections are blamed for 700,000 deaths a year, and successful treatment of many disease-causing infections depends largely on rapid detection. Unfortunately, it sometimes takes several days to confirm a diagnosis with the tools currently available to doctors.

"Speed is of the essence because some bacterial infections can cause serious health problems and sometimes lead to death," Mahshid says. "With a fluorescent microscope, the device we've developed can confirm the presence of bacteria in just a few minutes. I hope one day clinicians will use our device to deliver faster diagnostics, start treatment much more quickly and, ultimately, save lives."

Mahshid and her team, who just published their work in the journal Small, now hope to test their device on clinical samples, a necessary step before doctors are able to use such a device in a hospital setting. Theoretically, this new lab-on-a-chip, which is relatively inexpensive and easy to make, could also analyze samples from urine, blood or nasal swabs.

Explore further: Personalised prescription tool could help to combat antibiotic resistance

More information: Mahsa Jalali et al, A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria, Small (2018). DOI: 10.1002/smll.201801893

Related Stories

New ultrafast method for determining antibiotic resistance

August 9, 2017

Researchers at Uppsala University have developed a new method for very rapidly determining whether infection-causing bacteria are resistant or susceptible to antibiotics. The findings have now been published in the U.S. journal ...

Novel PET tracer identifies most bacterial infections

October 5, 2017

Stanford University medical scientists have developed a novel imaging agent that could be used to identify most bacterial infections. The study is the featured basic science article in The Journal of Nuclear Medicine's October ...

Recommended for you

How to mass produce cell-sized robots

October 23, 2018

Tiny robots no bigger than a cell could be mass-produced using a new method developed by researchers at MIT. The microscopic devices, which the team calls "syncells" (short for synthetic cells), might eventually be used to ...

Nanosized ferroelectrics become a reality

October 22, 2018

Using ferroelectricity instead of magnetism in computer memory saves energy. If ferroelectric bits were nanosized, this would also save space. But conventional wisdom dictates that ferroelectric properties disappear when ...

Taking steps toward a wearable artificial kidney

October 17, 2018

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.