New kinematics for customized, high-precision milling

July 2, 2018, Fraunhofer-Gesellschaft
Machining robot Flexmatik. Credit: Fraunhofer IFAM

Manufacturers generally must offer high-quality products at low prices in order to remain competitive. Three Fraunhofer Institutes are therefore working on the next generation of industrial robots which will facilitate cost-effective production processes. The researchers are focusing on developing a new kinematics for milling lightweight materials, metals, and steels. The aim: achieving a production tolerance of just 0.1 millimeters all over the robot workspace starting with the very first component.

More and more consumers are demanding made-to-order, customized . The production facilities of tomorrow will need to be efficient and versatile if they hope to meet increasingly stringent requirements and the specific needs of each customer – all while mastering the pressure of rising costs. High-precision that impart a certain geometrical shape to workpieces remain the solution of choice. Conventional industrial robots have simply been unable, due to their insufficient precision, to supplant such machine tools. Using robots for milling operations remains particularly challenging. Primarily due to the gear units, low stiffness deflects the – reducing its appeal for use. Indeed, production staff must comply with extremely tight production tolerances every time they machine , such as aluminum or carbon fiber reinforced plastic (CFRP), as well as metals, and steels.

Customized production, even for a batch size of one

Researchers working on Fraunhofer's "Flexmatik 4.1" joint research project (please see box) are developing an industrial robot designed for the high-precision milling of lightweight materials. The project partners are the Fraunhofer Institutes for Production Systems and Design Technology IPK, for Manufacturing Technology and Advanced Materials IFAM, and for Structural Durability and System Reliability LBF. The researchers must overhaul the kinematics if the robot is to prove successful. Sascha Reinkober, department head at Fraunhofer IPK, explains: "We're engineering a multi-axis kinematic chain that is specially designed for continuous path processes." The robot proceeds from point A to point B of the component being machined by traversing a linear unit, a type of rail. "The system simulations we conducted during the design phase indicate that we can achieve a precision objective of plus/minus 0.1 millimeters. This will be possible starting from the very first component, despite the process forces acting on it. Manufacturers can therefore customize production, even for a batch size of just one unit," says Jan Hansmann, project leader at Fraunhofer LBF. "Under the exposure of process forces, the robot will stray far less from its programmed target path. The robot can consequently drill a hole at the intended spot of the component with far greater precision, for instance."

To ensure high precision, the team of researchers is developing a new drive concept for individual axes. Partially direct drives are used, which are considerably stiffer during operation than today's high-tech gear units. And a new climate-control strategy minimizes imprecision due to temperature fluctuations. The robot is also equipped with a cnc control for machine tools. Last but not least, the new Flexmatik features an active vibration control system.

The new designed robot offers key benefits compared to machine tools: the cost of acquisition decreases by as much as a factor of 10 and the energy consumption by as much as a factor of 15. Thanks to its linear unit, the Flexmatik exhibits a workspace on par with large portal milling – and better accessibility. Compared to a portal milling machine, the Flexmatik does not require a special heavy foundation. This keeps construction costs lower and grants users flexibility in setting it up. Fraunhofer researchers want to complete a functional prototype by the end of 2018.

Their innovative milling robot can handle a broad range of applications – including the machining of large CFRP structures such as fuselages, the milling of components for gas turbines, and the re-contouring of press tools. "The Flexmatik is a suitable choice for many applications in practically all sectors which use machine tools. But it's not about replacing machine tools. The Flexmatik can instead be a useful addition that shares workloads. The ultimate goal is to make production processes more cost-effective," emphasizes Sven Philipp von Stürmer, project leader at Fraunhofer IFAM.

Explore further: All-purpose talent in aircraft manufacturing

Related Stories

All-purpose talent in aircraft manufacturing

April 3, 2018

In aircraft manufacturing, much of the milling, drilling and assembly is still done by hand. This is because the raw components vary not only in size and design, but also in shape accuracy. Small differences are unavoidable ...

Prototyping with industrial robots

November 10, 2008

Ship's propellers, parts for wind energy converters, turbine housings – such large-volume castings can only be produced with special molds. The procedure is elaborate and cost-intensive because foundry workers must still ...

Self-learning assistance system for efficient processes

June 1, 2018

To prevent long downtimes and high quantities of scrap, manufacturers must design production processes to be stable and efficient. Particularly successful outcomes are achieved when the experience of the people who operate ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.