Fingerprint of ancient abrupt climate change found in Arctic

July 9, 2018, Woods Hole Oceanographic Institution
In 2013, a team of researchers set sail to the eastern Beaufort Sea in search of evidence for the flood near where the Mackenzie River enters the Arctic Ocean, forming the border between Canada's Yukon and Northwest territories. From aboard the US Coast Guard Cutter Healy in ice-covered waters, the team gathered sediment cores from along the continental slope east of the Mackenzie River. Above, the piston corer is shown in horizontal position, with the gravity corer hanging vertically ready to be launched. Credit: Lloyd Keigwin, Woods Hole Oceanographic Institution

A research team led by Woods Hole Oceanographic Institution (WHOI) found the fingerprint of a massive flood of fresh water in the western Arctic, thought to be the cause of an ancient cold snap that began around 13,000 years ago.

"This abrupt climate change—known as the Younger Dryas—ended more than 1,000 years of warming," explains Lloyd Keigwin, an oceanographer at WHOI and lead author of the paper published online July 9, 2018, in the journal Nature Geoscience.

The cause of the cooling event, which is named after a flower (Dryas octopetala) that flourished in the cold conditions in Europe throughout the time, has remained a mystery and a source of debate for decades.

Many researchers believed the source was a huge influx of freshwater from melting ice sheets and glaciers that gushed into the North Atlantic, disrupting the deep-water circulation system—Atlantic Meridional Overturning Circulation (AMOC)— that transports warmer waters and releases heat to the atmosphere. However, geologic evidence tracing its exact path had been lacking.

In 2013, a team of researchers from WHOI, Scripps Institution of Oceanography at the University of California San Diego, and Oregon State University, set sail to the eastern Beaufort Sea in search of evidence for the flood near where the Mackenzie River enters the Arctic Ocean, forming the border between Canada's Yukon and Northwest territories. From aboard the U.S. Coast Guard Cutter Healy, the team gathered from along the continental slope east of the Mackenzie River. After analyzing the shells of fossil plankton found in the sediment cores, they found the long sought-after geochemical signal from the flood.

"The signature of oxygen isotopes recorded in foraminifera shells preserved in the sediment allowed us to fingerprint the source of the glacial lake discharge down the MacKenzie River 13,000 years ago," said co-principal investigator Neal Driscoll, a professor of geology and geophysics at Scripps Oceanography. "Radiocarbon dating on the shells provided the age constraints. Circulation models for the Arctic Ocean reveal that low-salinity surface water is efficiently transported to the North Atlantic. How exciting it is when the pieces of a more than 100-year puzzle come together."

Next steps in future research, Keigwin says, will be for scientists to answer remaining questions about the quantity of fresh water delivered to the North Atlantic preceding the Younger Dryas event and over how long of a period of time.

"Events like this are really important, and we have to understand them better," adds Keigwin. "In the long run, I think the findings from this paper will stimulate more research on how much is really necessary to cause a change in the system and weakening of the AMOC. It certainly calls further attention to the warming we're seeing in the Arctic today, and the accelerated melting of Greenland ice."

Earlier this year, a paper by researchers at the University College London and WHOI found evidence that the AMOC hasn't been running at peak strength since the mid-1800s and is currently at its weakest point in the past 1,600 years. Continued weakening could disrupt weather patterns from the U.S. and Europe to the African Sahel.

Explore further: Atlantic Ocean circulation at weakest point in more than 1,500 years

More information: Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling, Nature Geoscience (2018). DOI: 10.1038/s41561-018-0169-6 , https://www.nature.com/articles/s41561-018-0169-6

Related Stories

Recommended for you

Propping up glaciers to avoid cataclysmic sea level rise

September 20, 2018

As global warming outpaces efforts to tame it, scientists have proposed building massive underwater structures to prevent an Antarctic glacier the size of Britain from sliding into the sea and lifting the world's oceans by ...

NASA balloon mission captures electric blue clouds

September 20, 2018

On the cusp of our atmosphere live a thin group of seasonal electric blue clouds. Forming 50 miles above the poles in summer, these clouds are known as noctilucent clouds or polar mesospheric clouds—PMCs. A recent NASA ...

Study tracks Hurricane Harvey stormwater with GPS

September 20, 2018

Hurricane Harvey dumped more than 5 feet (1.5 meters) of water on southeast Texas in late August 2017, making it the wettest recorded hurricane in U.S. history. But after the storm passed, where did all that water go?

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

bredmond
not rated yet Jul 09, 2018
Last night i was up late looking at the Younger Dryas and the 8.2 kiloyear event. Ironically I find this article the next day. It seems that the draining of Lake Agasiz was clustered more with the 8.2 kiloyear event in time, but look forward to more information on this topic.
DarkMatter78
not rated yet Jul 10, 2018
It's frustrating how everything I read about the Younger Dryas abrupt climate change completely ignores the possibility of the Younger Dryas impact event being the catalyst. There's so much evidence.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.