Evolution does repeat itself after all

July 10, 2018, University of Konstanz
The map shows the geographic distribution and morphological diversity of the various species and ecotypes of Midas cichlids that occur in Lakes Nicaragua and Managua as well as in various crater lakes. Credit: Andreas Kautt

For every two species of mammal there is one species of cichlid fish, which goes to show that biodiversity is distributed rather unevenly among animals. But why? And to what extent can evolution be predicted? A variety of "internal" as well as ecological factors play a role. One decisive factor could be ecological conditions, i.e. the number of different habitats and the similarity of ecological niches available. That is one reason for why there are so many species in the tropics. The demographic history of a population can also influence biological diversity: Is the level of genetic variation in a population sufficient to allow it to adapt to ecological niches? Did the population have enough time to do so? Quantifying all potential factors that contribute to biological diversity, even for only one group of animals, is not easy, not to mention that comparing mammals with a group of fish would be like comparing apples and oranges.

The fallacy of comparing apples and oranges is something that Dr. Andreas Kautt, who is now a post-doctoral researcher at Harvard University, is acutely aware of. It does not apply to his research, however, since during his doctoral studies at the University of Konstanz he focused entirely on cichlids. His studies demonstrate just how "deterministic" evolution can be – even among as diverse a family as cichlids, a paramount example of evolutionary diversity and "creativity."

"Imagine 500 to 1,000 species of cichlids living in one of the African Great Lakes, one of the largest freshwater habitats in the world. The degree of complexity is unimaginable. Even the genealogical relationships between the cichlid species living in these lakes have only partially been resolved," says Professor Axel Meyer's former doctoral student. Meyer's evolutionary biology team, which is based at the University of Konstanz and is funded by an ERC Advanced Grant in the amount of € 2.5m, currently pursues a project that seeks to answer the following questions: Why does nature produce this unimaginable amount of different species? What are the origins of biodiversity? How predictable is evolution? Why does evolution repeat itself?

In a new publication in the journal Evolution Letters, Axel Meyer, Andreas Kautt and Dr. Gonzalo Machado-Schiaffino, a former staff member in Meyer's research team who is now an assistant professor at the University of Oviedo in Spain, are able to identify some of the factors that contribute to recurrent patterns of diversity and similarity in cichlids. Andreas Kautt puts the question prompted by their findings like this: "Which factors lead to similar outcomes and thereby help us predict evolution?"

Since the African Great Lakes are incredibly diverse, Axel Meyer's research team focuses not only on them, but also studies a more recent and simple "natural evolutionary experiment" involving parallel species of Nicaraguan Midas cichlids, which occur in the two as well as in a chain of lakes in Nicaragua. They investigate the morphology, genetics and habitats of the crater lake populations, comparing the results with those results obtained for members of the source population living in the great lakes of Nicaragua. Due to their smaller size, the crater lakes are not only less complex. An added advantage is that their maximum age has been determined. From an evolutionary perspective, with an age of between 1,000 and 24,000 years, they are very young, which makes them easier to study.

Also, the are isolated and their faunas all stem from the same older and larger source lakes. "The crater lake populations effectively represent natural evolutionary experiments," explains Andreas Kautt.

Based on statistical analyses of ecological data and a large amount of genetic information, Kautt et al. arrive at the following conclusion: "The more similar the habitat of the crater lake is to that of the large source lake, the more similar the fish are to each other." This suggests that it is the habitats – and not demographic criteria – that are decisive for the predictability of diversity. The data collected by the University of Konstanz biologists shows that, compared to the source population, the morphology of all crater lake populations has diversified mostly in the same direction: The crater lake fish all very quickly evolved body shapes that are longer and more slender than those of their cousins from the great lakes.

The importance of these ecological factors can further be demonstrated by the fact that the diverse body shapes of the crater lake populations are closely related to the average depth of the lakes. Andreas Kautt comments: "It makes sense. The deeper a is, the more likely it is to provide various , including in the deep open water." All of this leads the researchers to conclude that, under certain conditions, evolutionary outcomes can be predicted.

Explore further: Evolutionary split up without geographic barriers

More information: Andreas F. Kautt et al. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way, Evolution Letters (2018). DOI: 10.1002/evl3.64

Related Stories

Evolutionary split up without geographic barriers

July 5, 2016

A fundamental question in evolutionary research is: is a geographic barrier dividing the original population into two genetically separated populations required for the origin of new species? Or is so-called sympatric speciation ...

Is the outcome of evolution predictable?

October 28, 2014

If one would rewind the tape of life, would evolution result in the same outcome? The Harvard evolutionary biologist Stephen Jay Gould came up with this famous thought experiment. He suggested that evolution would not repeat ...

Brood parasitism in fish

May 10, 2018

There are other animals besides the cuckoo who smuggle their offspring into another animal's nest. The synodontis multipunctatus, which lives in Lake Tanganyika in Africa and is better known as the cuckoo catfish, is just ...

Scientists solve fish evolution mystery

February 10, 2017

A University of Wyoming researcher is part of an international team that has discovered how more than 700 species of fish have evolved in East Africa's Lake Victoria region over the past 150,000 years.

Recommended for you

High vinculin levels help keep aging fruit fly hearts young

July 17, 2018

Our cells tend to lose their shape as we grow older, contributing to many of the effects we experience as aging. This poses particular problems for the heart, where aging can disrupt the protein network within muscle cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.