How disc galaxies work

July 23, 2018, Harvard-Smithsonian Center for Astrophysics
How disc galaxies work
A Hubble image of the spiral disc galaxy NGC3972. Astronomers have developed a new model to explain why the star formation rate in nearly all disk galaxies, including the Milky Way, is so small, and why it correlates in the same way with a galaxy's gas mass and motions. Credit: NASA/Hubble

Disc galaxies like our own Milky Way, characterized by a flattened disc of stars and gas (often with a central bulge of material as well) have a wide range of masses, spatial extents, and stellar content. Nonetheless all disc galaxies, both locally and in the distant Universe, share some strikingly similar properties. Most notable is that the star formation rate correlates tightly with the galaxy's gas content, the gas motions (the "velocity dispersion"), and the dynamical lifetime (roughly, the time it takes for the galaxy to rotate once). Moreover, this curiously universal rate is remarkably small: only about one per cent of the gas in disc galaxies turns into stars over that timescale, with much of the activity concentrated in the galaxies' central regions. Most simple models of star formation predict that gravity should be much more effective in forming stars as it compresses the gas in molecular clouds. Observations indicate that both the correlations and the inefficiency extend down to the scale of individual molecular clouds.

CfA astronomers Blakesley Burkhart and John Forbes and two colleagues have developed a new unified model for galaxy discs that explains these phenomena, and some others besides. The scientists show that the correlation of rate with gas motion is not caused by these motions but rather is the result of the transport of material within the galaxy, which affects both. The model maintains a state of gas equilibrium and marginal gravitational stability by including in a galaxy the radial transport of gas towards its nucleus and also the turbulent feedback from star formation. These two considerations are relatively straightforward in principle but produce a dramatic improvement in the agreement between observations and theory, for example by explaining how the eventual quenching of the star formation happens. The new work also provides a natural explanation for the cosmic epochs at which galaxies build up bulges and discs.

Explore further: Understanding star-forming galaxies

More information: Mark R Krumholz et al. A unified model for galactic discs: star formation, turbulence driving, and mass transport, Monthly Notices of the Royal Astronomical Society (2018). DOI: 10.1093/mnras/sty852

Related Stories

Understanding star-forming galaxies

June 5, 2017

The more stars a typical spiral galaxy contains, the faster it makes new ones. Astronomers call this relatively tight correlation the "galaxy main sequence." The main sequence might be due simply to the fact that galaxies ...

Image: Hubble's compact galaxy with big-time star formation

October 16, 2017

As far as galaxies are concerned, size can be deceptive. Some of the largest galaxies in the Universe are dormant, while some dwarf galaxies, such as ESO 553-46 imaged here by the NASA/ESA Hubble Space Telescope, can produce ...

The turbulent interstellar medium

May 9, 2016

The gas in galaxies is typically seen to be moving at very rapid, even supersonic velocities, providing clear evidence that the medium is highly turbulent. Looking more closely at gas clouds in our own Milky Way, astronomers ...

Is the Milky Way getting bigger?

April 2, 2018

The galaxy we inhabit, the Milky Way, may be getting even bigger, according to Cristina Martínez-Lombilla, a PhD candidate at the Instituto de Astrofísica de Canarias in Tenerife, Spain, and her collaborators. She will ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.