How solar prominences vibrate

June 8, 2018, Instituto de Astrofísica de Canarias
Credit: Instituto de Astrofísica de Canarias

An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) and the Universidad de La Laguna (ULL) has cataloged around 200 oscillations of the solar prominences during the first half of 2014. Its development has been possible thanks to the GONG network of telescopes, of which one of them is located in the Teide Observatory.

When we look at the surface of the Sun the solar prominences are seen as dark filaments that populate the disk or as a blaze of plasma above it. Solar prominences are very dense plasma structures that levitate in the solar atmosphere. It is generally believed that the star's supports them so that they do not fall on the surface due to their own weight. These magnetic structures can accumulate a large amount of energy that, when released, produces eruptions ejecting the prominence material into the interplanetary space.

Manuel Luna, researcher at the IAC and the ULL, leads the team that has cataloged about 200 solar prominence oscillations detected in the first half of 2014. This analysis, published today in the Astrophysical Journal Supplement series, has served to verify that almost half of these events have been of large-amplitude. That is, oscillations with speeds between 10 km/s (36000 km/h) and 100 km/s. It has also been proven that these large-amplitude events are more common than previously thought.

The project is part of an international collaboration that began in 2015 through the International Space Science Institute (ISSI) and also the NASA project for the study of this type of oscillations.

Thanks to this compilation, a large variety of events have been found and it has been determined that, in many cases, the oscillations are produced by nearby flares. That is, by the sudden release of energy in the solar atmosphere.

With the collected data, a statistical study of the properties of the oscillations has been carried out. These movements consist of a cyclic movement of the prominences between two positions. It has been seen in it, that the oscillations (vibrations) have a period of approximately one hour. These periods are a characteristic of the prominences and reveal fundamental properties of their magnetic structure and the distribution of their mass. In addition, the oscillations show a large damping, or what is the same the vibration is reduced considerably after few cycles of . It is unknown why most of the protuberances oscillate with a period of one hour or why their movement is damped so quickly, therefore it will be necessary to continue investigating.

The data suggest that "the direction of movement of the oscillations forms an angle of about 27 degrees with the main axis of the prominence," Luna explains. He adds: "This direction coincides with the previous estimates of the orientation of the magnetic field." In addition, using seismological techniques, researchers have been able to deduce details about the geometry and intensity of the magnetic field that supports the prominences.

This study opens a new window to the investigation of the of the solar prominences and to the mechanisms that eventually destabilize them producing their eruption. In the future, the authors want to extend this analysis to an entire solar cycle to understand the evolution of these structures over the 11 years it lasts. To achieve this, artificial intelligence and big-data processing techniques will have to be applied.

Explore further: Image: Majestic solar eruption larger than Earth

More information: Luna, M. et al. GONG catalog of solar filament oscillations near solar maximum. Astrophysical Journal Supplement Series. DOI: 10.3847/1538-4365/aabde7

List of observed oscillations from GONG network data: www.iac.es/galeria/mluna/pages … atalogue-of-laos.php

Related Stories

Image: Majestic solar eruption larger than Earth

August 1, 2016

A gigantic ribbon of hot gas bursts upwards from the Sun, guided by a giant loop of invisible magnetism. This remarkable image was captured on 27 July 1999 by SOHO, the Solar and Heliospheric Observatory. Earth is superimposed ...

Giant solar tornadoes put researchers in a spin

April 5, 2018

Despite their appearance solar tornadoes are not rotating after all, according to a European team of scientists. A new analysis of these gigantic structures, each one several times the size of the Earth, indicates that they ...

Video: Hefty Prominence Eruption Observed by SDO

October 19, 2015

A mass of solar material gathered itself into a twisting mass, spun around for a bit, then rose up and broke apart over a 10-hour period on Oct. 13, 2015. Prominences are unstable clouds of gas tethered above the surface ...

Our sun—three different wavelengths

April 11, 2018

From March 20-23, 2018, NASA's Solar Dynamics Observatory captured three sequences of our sun in three different extreme ultraviolet wavelengths. The resulting images illustrate how different features that appear in one sequence ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.