Control of quantum state of optical phonon in diamond induced by ultrashort light pulses

June 26, 2018, Tokyo Institute of Technology
Coherent optical phonons are coherently controlled by a pair of ultrashort optical pulses. |g> and |e> indicate the electronic ground and excited states and |0> and |1> indicate zero- and one-phonon state, respectively. Credit: Kazutaka G. Nakamura

Ultrashort light-pulse-induced vibrations of atoms in a lattice, called optical coherent phonons, have been controlled in various materials. However, different experiments demonstrating such control have been explained through multiple empirical theories, and a unified theory based on quantum mechanics is lacking. Scientists at Tokyo Institute of Technology successfully formulated a unified theory for this phenomenon and experimentally verified it in diamond, the optical phonons of which have great potential for application in quantum information technology.

When an extremely short optical enters a solid, the atoms in its lattice start vibrating. Collectively, such vibrations of atoms exhibit both wave-like and particle-like behavior, and in quantum mechanics, these vibrations are called coherent optical phonons, because they are induced by light and oscillate in phase. Phonons can determine various physical properties of solids, such as thermal and electrical conductivities. In previous experiments, the properties of coherent optical phonons, such as amplitude and phase, have been successfully controlled in various materials through a technique called coherent control, which has been made possible by advances in ultrafast laser technology. However, the results of different coherent control experiments have been explained using different empirical theories. Therefore, a unified quantum mechanical theory that explains the control of optical phonons is required.

A research team led by Professor Kazutaka G. Nakamura at Tokyo Institute of Technology (Tokyo Tech) collaborated with Professor Yutaka Shikano at Quantum Computing Center, Keio University and Institute for Quantum Studies, Chapman University, recently formulated a theoretical framework that fundamentally and practically explains the generation and detection of coherent optical photons. The theory is based on a model involving two states of electrons as well as the quantum harmonic oscillator, one of the few quantum mechanical systems for which an exact solution is known. Calculations based on this theory showed that the amplitude of a controlled can be expressed by the sum of two sinusoidal functions.

Transmittance change of the probe pulse plotted against the delay of the probe pulse with respect to the second pump pulse for five different time gaps between the two pump pulses [(a) to (e)]. The spikes are caused by the overlapping of the probe pulse with the first or second pump pulse. The change in amplitudes of the sinusoidal waves after the second set of spikes confirms that the coherent control of phonons is realized by varying the time gap. Credit: Kazutaka.G.Nakamura

To test this theory, the scientists conducted an experiment of coherent control in diamond. Diamond is a very important material in this field because the coherent control of its optical phonons is promising to develop quantum memory In the experiment, coherent control is achieved by employing two extremely short laser pulses, known as pump pulses: one pulse induces an oscillation, or phonons, while the other controls the amplitude of oscillation. The time gap between the two pulses is varied to the properties of the generated phonons. A probe pulse sent with a delay after the two pump pulses is used to measure the properties of the generated phonons by detecting changes in the transmitted intensity of this pulse with respect to the delay.

The measured amplitude and phase of controlled oscillations induced by the pump pulses in diamond showed a remarkable agreement with the predictions of the theory. Thus, a comprehensive understanding of the of coherent optical phonons has been achieved. This is expected to be useful in the development of memory systems for computing, in addition to other applications in electronics, optics, materials science, and superconductivity.

The points in the two figures show the experimentally measured amplitude (a) and phase (b) of the phonon oscillation with respect to the time gap between the two pump pulses. The points are consistent with the solid lines in the two figures, which represent the predictions of the proposed theory. Credit: Kazutaka.G.Nakamura

Explore further: Transferring quantum information using sound

More information: Hiroya Sasaki et al, Coherent control theory and experiment of optical phonons in diamond, Scientific Reports (2018). DOI: 10.1038/s41598-018-27734-1

Related Stories

Transferring quantum information using sound

June 6, 2018

Quantum physics has led to new types of sensors, secure data transmission methods and researchers are working toward computers. However, the main obstacle is finding the right way to couple and precisely control a sufficient ...

Detecting the birth and death of a phonon

June 5, 2018

Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. When such vibrations are produced by light interacting with ...

A way to measure and control phonons

September 22, 2017

(—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.