Observations identify three different activity periods in the quasar 3C 279

June 18, 2018 by Tomasz Nowakowski, Phys.org report
The behavior of the polarimetric observations (P, PA, Polarized Flux) compared with the gamma-rays and the UV-continuum for 3C 279. Credit: Patiño-Álvarez et al., 2018.

An international team of astronomers has conducted multi-wavelength photometric and spectropolarimetric observations of the quasar 3C 279, which revealed three different activity periods in this object. The finding is reported in a paper published June 5 on the arXiv pre-print repository.

Located in the constellation Virgo, 3C 279 is an optically violent variable quasar (quasi-stellar radio source), known for its variations in the visible, radio, and X-ray bands. Recent studies suggest that 3C 279 should be classified as a blazar—a very compact quasar associated with a at the center of an active, giant elliptical galaxy. Blazars are perceived by astronomers as high-energy engines serving as natural laboratories to study particle acceleration, relativistic plasma processes, magnetic field dynamics and black hole physics.

Although many observations of 3C 279 have been conducted in different wavelengths, there are still uncertainties regarding the location of the gamma-ray production zone in this source. In order to clarify these concerns, a group of astronomers led by Víctor Manuel Patiño-Álvarez of the Max Planck Institute for Radio Astronomy in Bonn, Germany, has analyzed the light curves for 3C 279 from 1 millimeter to gamma-rays, obtained over a time span of six years.

"In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multi-wavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry," the researchers wrote in the paper.

In particular, the astronomers performed an analysis of data from a real variety of bands, including optical and near-infrared photometry, optical spectra, millimeter, gamma-rays, X-rays, and spectropolarimetry. These data were acquired by many ground-based observatories and space telescopes.

The observations based on the behavior of the gamma-ray light curve with respect to other bands led to the identification of three different activity periods in 3C 279, namely period A, B and C.

According to the paper, during period A multiple flares in the , as well as counterparts in the optical (V-band), ultraviolet continuum, and near-infrared emission (J-, H- and K-bands) were observed. During period B, multiple flares in the optical V-band, with clear counterparts in the ultraviolet spectral continuum and near-infrared bands, were identified.

When it comes to period C, the researchers observed the highest levels of gamma-ray emission in their time-frame of the study.

"At the start of this time period we observe a very intense flare in the gamma-rays with a clear counterpart in the 1 mm emission, and high levels of degree of polarization, however, we do not see any response in the wavelength range from ultraviolet to near-infrared," the paper reads.

According to the researchers, the results suggest that the dominant emission mechanism for the gamma-rays in 3C 279 changes with time. However, they added that there is also a possibility that the location of the gamma-ray zone itself changes depending on the activity state of the central engine.

Explore further: Multiple gamma-ray emission regions detected in the blazar 3C 279

More information: Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279, arXiv:1806.01693 [astro-ph.HE] arxiv.org/abs/1806.01693

In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.

Related Stories

Unveiling the secrets of the Milky Way galaxy

April 20, 2018

A multinational team of astronomers involving the University of Adelaide has catalogued over 70 sources of very high energy gamma rays, including 16 previously undiscovered ones, in a survey of the Milky Way using gamma ray ...

A new class of extragalactic objects

October 29, 2012

A blazar is a galaxy with an intensely bright central nucleus containing a supermassive black hole, much like a quasar. The difference is that a blazar can emit light with extremely high energy gamma rays that are sometimes ...

Observations reveal complex environment of HD 50138

May 14, 2018

Using European Southern Observatory's Very Large Telescope (VLT) European astronomers have uncovered a complex circumstellar environment of the star HD 50138. The finding, which could provide important clues about the evolutionary ...

Radio weak blazars

January 30, 2017

A blazar is a galaxy whose central nucleus is bright at wavelengths from the low energy radio band to high energy gamma rays (each gamma ray photon is over a hundred million times more energetic than the X-rays seen by the ...

Recommended for you

Powering a pacemaker with a patient's heartbeat

February 20, 2019

Implantable pacemakers have without doubt altered modern medicine, saving countless lives by regulating heart rhythm. But they have one serious shortcoming: Their batteries last only five to 12 years, at which point they ...

The global impact of coal power

February 20, 2019

Coal-fired power plants produce more than just carbon dioxide, which contributes to global warming. Coal burning also releases particulate matter, sulphur dioxide, nitrogen oxide and mercury—thus damaging the health of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.