'Walking molecules" haul away damaged DNA to the cell's emergency room

June 20, 2018, University of Southern California
An artistic rendering of the mechanism responsible for relocalization of heterochromatic repair sites during homologous recombination. A nuclear myosin walks along a dynamic nuclear actin filament, carrying broken DNA for repair. Credit: Yekaterina Kadyshevskaya, USC

The cell has its own paramedic team and emergency room to aid and repair damaged DNA, a new USC Dornsife study reveals.

The findings are timely, as scientists are delving into the potential of genome editing with the DNA-cutting enzyme, CRISPR-Cas9, to treat diseases or to advance scientific knowledge about humans, plants, animals and other organisms, said Irene Chiolo, Gabilan Assistant Professor of biological sciences at the USC Dornsife College of Letters, Arts and Sciences.

Genome editing has arrived before scientists have thoroughly studied the significance and impact of DNA damage and repair on aging and disease, such as cancer. Chiolo's work has been revealing more about those processes.

For the study published today in Nature, Chiolo and her team of researchers at USC Dornsife, using fluorescent markers, tracked what happened when DNA was damaged in fruit fly cells and mouse cells. They saw how the cell launches an emergency response to repair broken DNA strands from a type of tightly-packed DNA, .

"Heterochromatin is also referred to as the 'dark matter of the genome,' because so little is known about it," said Chiolo. "But DNA damage in heterochromatin is likely a major driving force for cancer formation."

Don't call it junk

Repeated DNA sequences have had a bad nickname, "junk DNA," for about 20 years. Scientists decoding the genome called it junk because they were initially focused on understanding the functions of individual genes.

Since then, studies have shown that repeated DNA sequences are in fact essential for many nuclear activities, but their defective repair is also linked to aging and disease.

A nuclear myosin 'walks' along a dynamic nuclear actin filament, carrying broken DNA and repair templates to the nuclear periphery for 'safe' repair. Credit: Celja Webel, USC
"Heterochromatin is mostly composed of repeated DNA sequences," Chiolo said. "The low gene content is part of the reason why these sequences are less characterized."

In fact, mutations that compromise heterochromatin repair result in massive chromosome Add a titlerearrangements affecting the entire genome.

First responders take a walk

The scientists found that after the DNA strands are broken, the cell prompts a series of threads— nuclear actin filaments— to assemble and create a temporary highway to the edge of the nucleus. Then come the paramedics—proteins known as myosins.

"Myosins are conveyed as a walking molecule because they have two legs. One is attached and the other moves. It's like a molecular machine that walks along the filaments."

The myosins pick up the injured DNA, walk along the filament road and then reach the emergency room, a pore at the periphery of the nucleus.

"We knew, based on our prior study, that there was an emergency room—the nuclear pore where the cell fixes its broken DNA strands. Now, we have discovered how the damaged DNA travels there" Chiolo said. "What we think is happening here is that the damage triggers a defense mechanism that quickly builds the road, the actin filament, while also turning on an ambulance, the myosin."

The researchers plan further studies examining the repair of DNA in heterochromatin.

"I'm excited to see how the molecular mechanisms we uncovered work in humans, as well as in plants that have much larger heterochromatin. It will be fascinating to see how such a complex mechanism functions and evolves over time and what aspects of the mechanisms may be adapted for other functions," said Christopher Caridi, a co-lead author for the study and a postdoctoral researcher in Chiolo's lab at USC Dornsife.

Explore further: Nuclear membrane repairs the 'dark matter' of DNA

More information: Christopher P. Caridi et al, Nuclear F-actin and myosins drive relocalization of heterochromatic breaks, Nature (2018). DOI: 10.1038/s41586-018-0242-8

Related Stories

Nuclear membrane repairs the 'dark matter' of DNA

October 29, 2015

Scientists have found a new function of the nuclear membrane, the envelope that encases and protects DNA in the nucleus of a cell - it fixes potentially fatal breaks in DNA strands.

Researchers find new mechanism for genome regulation

June 21, 2017

The same mechanisms that quickly separate mixtures of oil and water are at play when controlling the organization in an unusual part of our DNA called heterochromatin, according to a new study by researchers at the Department ...

Dual systems key to keeping chromosomes intact

March 7, 2013

USC scientists have discovered how two different structural apparatuses collaborate to protect repetitive DNA when it is at its most vulnerable – while it is being unzipped for replication.

How does plant DNA avoid the ravages of UV radiation?

April 17, 2018

If the ultraviolet radiation from the sun damages human DNA to cause health problems, does UV radiation also damage plant DNA? The answer is yes, but because plants can't come in from the sun or slather on sunblock, they ...

Recommended for you

Activating a new understanding of gene regulation

November 19, 2018

Regulation of gene expression—turning genes on or off, increasing or decreasing their expression—is critical for defining cell identity during development and coordinating cellular activity throughout the cell's lifetime. ...

Geneticists solve long-standing finch beak mystery

November 19, 2018

Bridgett vonHoldt is best known for her work with dogs and wolves, so she was surprised when a bird biologist pulled her aside and said, "I really think you can help me solve this problem." So she turned to a mystery he'd ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Surveillance_Egg_Unit
4.2 / 5 (5) Jun 21, 2018
This is an astounding discovery. Congratulations to the researchers and their staff. Perhaps, as I have long thought, the human/animal/plant physiology is that of an organic machine whose every cell contains an algorithm for survival that has been programmed into it since the first single-celled life forms were created in the waters of Earth.
Who says that Science and the belief in God the Creator don't mix?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.