Designer materials with completely random structures might enable quantum computing

June 4, 2018, Aalto University
Randomly sprinkled magnetic atoms (red arrows) on a superconducting surface may give rise to a topological superconducting phase. Inset: The onset of the topological phase is signaled by the appearance of so-called Majorana edge mode encircling the system. Credit: Teemu Ojanen

Designing quantum materials with exotic and unprecedented electrical properties has the field of physics teeming with buzz. Researchers at Aalto University in Finland have now introduced a significant turn in this discussion by developing an amorphous material which exhibits topological superconductivity. Until this point, these materials have required highly regular structures to show desired electrical properties.

The findings, published in Nature Communications, bring the field one step closer to application. Topological superconductors and insulators are considered to be possible building blocks of lossless components for computers. While topological superconductors might not exist in nature, they can be fabricated, as the study demonstrates.

"We have presented a method of fabricating topological in amorphous systems with randomly placed constituents. This means we can achieve superconductivity in the material by sprinkling magnetic atoms on a superconducting surface completely at random, not in highly-defined and ornamented lattices, for example," explains doctoral student Kim Pöyhönen.

The recent boom on topological superconductors stems mainly from an unconventional quantum-level phenomenon, a collective movement of many individual particles called Majorana fermion excitations. They have been envisioned as critical ingredients of .

"Getting highly irregular, random systems to work as will potentially make their fabrication and manufacture much more convenient compared to current methods," says research group leader, Docent Teemu Ojanen.

Perhaps for now, the implications of the random quantum material verge only on fundamental research, but that might not be the case for much longer.

"For topological quantum matter to find its way to actual applications, it's imperative we find even more new candidates for amorphous topological materials," states Ojanen.

Explore further: Novel thermal phases of topological quantum matter in the lab

More information: Kim Pöyhönen et al. Amorphous topological superconductivity in a Shiba glass, Nature Communications (2018). DOI: 10.1038/s41467-018-04532-x

Related Stories

Novel insulators with conducting edges

June 1, 2018

Physicists at the University of Zurich are researching a new class of materials: Higher-order topological insulators. The edges of these crystalline solids conduct electric current without dissipation, while the rest of the ...

Theoretical quantum spin liquid prepared for the first time

March 15, 2018

In 1987, Paul W. Anderson, a Nobel Prize winner in physics, proposed that high-temperature superconductivity, or loss of electrical resistance, is related to an exotic quantum state now known as quantum spin liquid. Magnetic ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.