Image: Star-circling bubble of gas

June 11, 2018, European Space Agency
Credit: ESA/XMM-Newton; J. Toalá; D.Goldman

This turbulent celestial palette of purple and yellow shows a bubble of gas named NGC 3199, blown by a star known as WR18 (Wolf-Rayet 18).

Wolf-Rayet are massive, powerful, and energetic stars that are just about reaching the end of their lives. They flood their surroundings with thick, intense, fast-moving winds that push and sweep at the material found there, carving out weird and wonderful shapes as they do so. These winds can create strong shockwaves when they collide with the comparatively cool interstellar medium, causing them to heat up anything in their vicinity. This process can heat material to such high temperatures that it is capable of emitting X-rays, a type of radiation emitted only by highly energetic phenomena in the Universe.

This is what has happened in the case of NGC 3199. Although this kind of scenario has been seen before, it is still relatively rare; only three other Wolf-Rayet bubbles have been seen to emit X-rays (NGC 2359, NGC 6888, and S308). WR18 is thought to be a star with especially powerful winds; once it has run out of material to fuel these substantial winds it will explode violently as a supernova, creating a final breath-taking blast as it ends its stellar life.

This image was taken by the European Photon Imaging Camera (EPIC) on ESA's XMM-Newton X-ray space observatory, and marks different patches of gas in different colours. The incredibly hot, diffuse, X-ray-emitting gas within the Wolf-Rayet bubble is shown in blue, while a bright arc that is visible in the optical part of the spectrum is traced out in shades of yellow-green (oxygen emission) and red (sulphur emission).

This blue and yellow-green component forms an optical nebula – a glowing cloud of dust and ionised gases – that stretches out towards the western end of the X-ray bubble (in this image, North is to the upper left). This lopsided arc caused astronomers to previously identify WR18 as a so-called runaway star moving far faster than expected in relation to its surroundings, but more recent studies have shown that the observed X-ray emission does not support this idea. Instead, the shape of NGC 3199 is thought to be due to variations in the chemistry of the bubble's surroundings, and the initial configuration of the around WR18.

Explore further: Image: Hubble's blue bubble

Related Stories

Image: Hubble's blue bubble

February 29, 2016

Sparkling at the center of this beautiful NASA/ESA Hubble Space Telescope image is a Wolf–Rayet star known as WR 31a, located about 30,000 light-years away in the constellation of Carina (The Keel).

Hubble's cosmic bubbles

April 21, 2017

This entrancing image shows a few of the tenuous threads that comprise Sh2-308, a faint and wispy shell of gas located 5,200 light-years away in the constellation of Canis Major (The Great Dog).

Hubble eyes a smoldering star

September 23, 2013

(Phys.org) —This new image, snapped by NASA/ESA Hubble Space Telescope, shows the star HD 184738, also known as Campbell's hydrogen star. It is surrounded by plumes of reddish gas—the fiery red and orange hues are caused ...

Image: Thor's Helmet nebula in the X-ray spectrum

April 20, 2015

This brightly coloured scene shows a giant cloud of glowing gas and dust known as NGC 2359. This is also dubbed the Thor's Helmet nebula, due to the arching arms of gas stemming from the central bulge and curving towards ...

Image: Crescent nebula

December 11, 2017

A young massive star that began life around 25 times more massive than our own Sun is shedding shells of material and fast winds to create this dynamic scene captured by ESA's XMM-Newton.

Fire burn and cauldron bubble in Canis Major

October 30, 2012

The cosmic cauldron has brewed up a Halloween trick in the form of a ghostly face that glows in X-rays, as seen by ESA's XMM-Newton space telescope. The eerie entity is a bubble bursting with the fiery stellar wind of a 'live ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

Hubble paints picture of the evolving universe

August 16, 2018

Astronomers using the ultraviolet vision of NASA's Hubble Space Telescope have captured one of the largest panoramic views of the fire and fury of star birth in the distant universe. The field features approximately 15,000 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.