Hybrid overhead lines—more power, not more power lines

June 4, 2018, Swiss National Science Foundation
Hybrid overhead lines—more power, not more power lines
Credit: Swiss National Science Foundation (SNSF)

Social opposition to new high-voltage lines is delaying modernisation of the power grid. Two projects of the National Research Programmes "Energy Turnaround" and "Managing Energy Consumption" have determined the optimum design of hybrid overhead lines needed to increase the capacity of the power transmission grid and, at the same time, win popular acceptance for the new technology.

Unlike conventional power lines, hybrid overhead lines combine alternating current (AC) and direct current (DC) systems on the same tower instead of two AC systems. This increases transmission even though the height and width of the lines remain identical, and it avoids new construction and encroachment on the landscape. However, interference caused by the weather, contamination of the AC and DC conductor cables or the distance between cables can lead to bothersome noise and electric fields.

As part of the National Research Programme "Energy Turnaround" (NRP 70), a team of researchers at ETH Zurich investigated the optimal design of this hybrid system. "Hybrid overhead lines have two major advantages: their capacity is over 50 per cent higher and they are more likely to be accepted because you can upgrade existing high-voltage lines rather than build new ones. To minimise interference effects associated with the higher transmission capacity, such as corona humming and electric fields, we determined the best voltage and tower geometry using test lines under various real-world conditions both in the laboratory and in the field," says project lead Christian Franck, Professor at the ETH Zurich's Institute for Power Systems and High Voltage Technology.

Many advantages, but acceptance is not a given

While the was being developed, the opportunities and means for achieving the necessary social acceptance were also being investigated. "Even though higher capacity without encroaching on the landscape favours the new hybrid , and we'll be able to significantly reduce the negative effects, we knew from the outset that hybrid overhead lines weren't going to happen without the consent of the people directly affected by them," says Franck. Which explains the collaboration with the Institute for Political Science at the University of Bern.

Isabelle Stadelmann-Steffen, Professor at the University of Bern, is investigating the social acceptance of renewable energies as part of the National Research Programme "Managing Energy Consumption" (NRP 71). The survey of roughly 1300 individuals about their attitudes towards hybrid overhead lines revealed three key findings: "First, information about any new technology must be provided proactively. Ideally, the community needs to be involved as early as possible to get across the importance of the project while providing the opportunity to include opinions and concerns in the decision-making process. Second, alternatives must be discussed, because the support for a new technology is always weighed against the alternatives. And third, the extent to which you can reduce the negative effects of a technology will naturally increase acceptance."

Better technology through interdisciplinary collaboration

The close collaboration between the researchers at ETH Zurich and the University of Bern, as well as the Swiss transmission system operator Swissgrid and distribution network and hydropower plant operators, enabled real technological advances. The ETH Zurich's engineers focused primarily on maximising without compromising the limit values for electromagnetic fields and noise, while findings from the research on helped to determine an optimal balance between high capacity and the lowest possible "perceptibility."

Explore further: A world record in direct current transmission

Related Stories

A world record in direct current transmission

May 3, 2011

Siemens is building power converter stations for a high-voltage direct current (HVDC) transmission system with a record capacity of 2 x 1,000 megawatts. Beginning in 2013 the new HVDC PLUS technology will transmit 2,000 megawatts ...

High voltage at the world's tallest dam

April 28, 2014

Siemens is bringing electricity to the surface from the world's deepest arch-dam turbines. The dam of the Jinping-1 Hydropower Station in China's Sichuan province is 305 meters tall; the turbines are located 230 meters deep. ...

Dressing the power lines to bring more renewables into cities

February 12, 2016

A higher volume of electricity delivered to the grid requires adaptation of existing transmission lines and improvement of the system's security. To this end, innovative materials and geometries of components are being designed ...

Keeping tabs on aging power cables to prevent outages

December 23, 2016

Switzerland's power grid comprises over 250,000 kilometers of lines. Composed of a transmission and a distribution network, the voltage is gradually reduced from 380,000 to 230 volts enroute to the consumer. The aboveground ...

Recommended for you

Permanent, wireless self-charging system using NIR band

October 8, 2018

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting ...

Facebook launches AI video-calling device 'Portal'

October 8, 2018

Facebook on Monday launched a range of AI-powered video-calling devices, a strategic revolution for the social network giant which is aiming for a slice of the smart speaker market that is currently dominated by Amazon and ...

Artificial enzymes convert solar energy into hydrogen gas

October 4, 2018

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.