The discrepancy between mathematical proofs, algorithms, and their implementations in control systems

June 26, 2018, Chinese Association of Automation

Engineers work in quantifiable realism—an object exists and can be measured. Sometimes, though, the certainty of the object and how it will behave wavers. Researchers from the Automatic Control and System Dynamics Laboratory at the Technische Universität Chemnitz in Germany are starting to close the gap between reality and mathematical uncertainty.

They published an analysis of the discrepancy between mathematical proofs, algorithms, and their implementations in control systems with real, measurable outcomes. Their work appears in the July issue of IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the IEEE and the Chinese Association of Automation.

"Control systems appear in everything from washing machines to rockets," said Pavel Osinenko, an author on the paper. "Control engineers work with objects that correspond with reality. For models of real objects, we need to develop real controllers that work in the final application. Classical mathematics are good to investigate highly abstract objects, but they overshoot on control theory."

In classical mathematic theory, Osinenko said, strength is an important factor that can miss the point of control theory. Strength, in this case, refers to the specificity of the information conveyed. Some mammals are humans, and some humans are women, and some women are mothers. In classical mathematics, it's stronger to know a variable in an equation is a human mother than simply a mammal, because more information can be inferred.

"In order for control theory to work, it requires a logical background that is way weaker," Osinenko said, noting that classical mathematics requires a logical system of several steps to ensure the most specific information to stay as strong as possible. "We need a minimalistic logical system for control theory."

The researchers analyzed a hundred-year-old theorem by mathematician Constantin Carathéodory. The theorem purports that a problem with a changeable independent variable, such as the trajectory of a thrown ball, can be solved with weak logical systems.

"It's constructive mathematics—every object that you can construct or prove to exist is computable. You can input a mathematical proof one to one in your computer," Osinenko said.

That's not the case in classical mathematics where objects are often proven by assuming they don't exist until contradictory mathematics provide evidence.

The researcher explored a variant of Caratheordory's theorem that covers several problems in practice and not just in theory. It's the link between theorems and proofs and computational certainty.

"Classical mathematics says there's a black cat in a dark room. It's definitely in there, but you can't point to its precise location," Osinenko said. "This minimal logical system is the torch with which we light up the room. The cat is right there."

The authors plan to further investigate minimal logic systems and constructive mathematics, with a focus on automated reasoning to aid in solutions for control systems.

"There's an ocean of mathematical results and theories in control theory that still wait for their constructive treatment," Osinenko said. "The next step is for us to pick one and work it out."

Explore further: Entanglement is an inevitable feature of reality

More information: Pavel Osinenko et al, Analysis of the Caratheodory's theorem on dynamical system trajectories under numerical uncertainty, IEEE/CAA Journal of Automatica Sinica (2018). DOI: 10.1109/JAS.2018.7511135

Related Stories

Mathematicians deliver formal proof of Kepler Conjecture

June 16, 2017

A team led by mathematician Thomas Hales has delivered a formal proof of the Kepler Conjecture, which is the definitive resolution of a problem that had gone unsolved for more than 300 years. The paper is now available online ...

Engineers propose coordinated control to assist drivers

April 13, 2018

Engineers have proposed a coordinated control architecture for motion management in advanced driver assistance systems (ADAS) to increase safety and comfort across all vehicles, regardless of ADAS specifics.

Recommended for you

Team breaks world record for fast, accurate AI training

November 7, 2018

Researchers at Hong Kong Baptist University (HKBU) have partnered with a team from Tencent Machine Learning to create a new technique for training artificial intelligence (AI) machines faster than ever before while maintaining ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.