Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

June 27, 2018, Technical University Munich
A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size. Pulses of femtosecond length from the pump laser (left) generate on-chip electric pulses in the terahertz frequency range. With the right laser, the information is read out again. Credit: Christoph Hohmann / NIM, Holleitner / TUM

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 . This range in between is referred to as the terahertz gap, since components for signal generation, conversion and detection have been extremely difficult to implement.

The TUM physicists Alexander Holleitner and Reinhard Kienberger succeeded in generating electric pulses in the frequency range up to 10 terahertz using tiny, so-called plasmonic antennas and running them over a chip. Researchers call antennas plasmonic if their shape amplifies the light intensity at the metal surfaces.

The asymmetrical shape of the antennas is important. One side of the nanometer-sized metal structures is more pointed than the other. When a lens-focused laser excites the antennas, they emit more electrons on their pointed side than on the opposite flat ones. An electric current flows between the contacts—but only as long as the antennas are excited with the laser light.

"In photoemission, the light pulse causes electrons to be emitted from the metal into the vacuum," explains Christoph Karnetzky, lead author of the Nature study. "All the lighting effects are stronger on the sharp side, including the photoemission that we use to generate a small amount of current."

Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire. Credit: A. Holleitner / TUM

The light pulses lasted only a few femtoseconds. The electrical pulses in the antennas were correspondingly short. Technically, the structure is interesting because the nano-antennas can be integrated into terahertz circuits a mere several millimeters across. In this way, a femtosecond laser pulse with a frequency of 200 terahertz could generate an ultra-short terahertz signal with a frequency of up to 10 terahertz in the circuits on the chip, according to Karnetzky.

The researchers used sapphire as the chip material because it cannot be stimulated optically and, thus causes no interference. With an eye on future applications, they used 1.5-micron wavelength lasers deployed in traditional internet fiber-optic cables.

Holleitner and his colleagues made yet another amazing discovery: Both the electrical and the terahertz pulses were non-linearly dependent on the excitation power of the . This indicates that the photoemission in the antennas is triggered by the absorption of multiple photons per pulse.

"Such fast, nonlinear on-chip pulses did not exist hitherto," says Alexander Holleitner. Utilizing this effect he hopes to discover even faster tunnel emission effects in the antennas and to use them for applications.

Explore further: Liquids take a shine to terahertz radiation

More information: Christoph Karnetzky et al, Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters, Nature Communications (2018). DOI: 10.1038/s41467-018-04666-y

Related Stories

Liquids take a shine to terahertz radiation

October 30, 2017

In a significant breakthrough, scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, have devised a high-power radiation source in the terahertz (THz) region of the electromagnetic spectrum. This study, ...

New record achieved in terahertz pulse generation

February 13, 2017

A group of scientists from TU Wien and ETH Zurich have succeeded in their attempts to generate ultrashort terahertz light pulses. With lengths of just a few picoseconds, these pulses are ideally suited to spectroscopic applications ...

Terahertz computer chip now within reach

March 26, 2018

Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times ...

Recommended for you

Fiber optic sensor measures tiny magnetic fields

September 19, 2018

Researchers have developed a light-based technique for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. The inexpensive and compact sensors could offer an alternative to the magnetic ...

The hunt for leptoquarks is on

September 19, 2018

Matter is made of elementary particles, and the Standard Model of particle physics states that these particles occur in two families: leptons (such as electrons and neutrinos) and quarks (which make up protons and neutrons). ...

Researchers push the boundaries of optical microscopy

September 19, 2018

The field of optical microscopy research has developed rapidly in recent years. Thanks to the invention of a technique called super-resolution fluorescence microscopy, it has recently become possible to view even the smaller ...

Searching for errors in the quantum world

September 19, 2018

The theory of quantum mechanics is well supported by experiments. Now, however, a thought experiment by ETH physicists yields unexpected contradictions. These findings raise some fundamental questions—and they're polarising ...

Extremely small and fast: Laser ignites hot plasma

September 19, 2018

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.