No sperm or egg required: mouse proto-embryo made in the lab

May 3, 2018
The image is a representation of a blastoid (a synthetic embryo formed from stem cells) formed using plastic bricks (these are not Lego®) and that floats into a uterus. The green cells are the trophoblast stem cells (the future placenta), whereas the red cells are the embryonic stem cells (the future embryo). Credit: Nicolas Rivron

Scientists have for the first time created embryo-like structures in the lab from stem cells, without recourse to eggs or sperm, they reported Wednesday.

In experiments, bundles of mouse stems —one type corresponding to the placenta, another to the embryo—self-organised into proto-embryos and initiated pregnancies when implanted into mouse wombs.

The procedure was not expected to create a viable embryo and did not do so, but could yield important insights into fertility and the earliest phases of life, according to a study published in the journal Nature.

"This breakthrough has opened up the black box of early pregnancy," said lead author Nicolas Rivron, a researcher at MERLN and Hubrecht Institutes in Utrecht, The Netherlands.

At the initial stage of development an embryo is about the width of a human hair and tucked inside the womb, making it inaccessible for in vivo research, at least in humans.

"These early embryos have all the cell types required to form a whole organism," said Rivron.

"They will help us better understand the hidden processes at the start of life, to find solutions for fertility problems, and to develop new drugs without the use of lab animals."

Currently, some two-thirds of in vitro fertilisation (IVF) treatments fail, mostly at the time of implantation in the uterus. Why remains largely unknown.

The image is a representation of many blastoids, which are synthetic embryos formed in the lab, from stem cells. The green cells are the trophoblast stem cells (the future placenta), whereas the red cells are the embryonic stem cells (the future embryo). Credit: Nicolas Rivron

A few days after a mammal egg has been fertilised, it develops into a so-called blastocyst, a hollow sphere formed by less than 100 cells divided into an outer layer—the future placenta—and a small cluster in the middle, the future embryo.

Individual stem cell lines corresponding to both these sub-types have been cultivated separately in the lab for decades.

Using engineering technologies, Rivron and his team assembled them for the first time in such a way as to trigger self-organisation, resulting in the formation of what they called "blastoids".

Chatty stem cells

"In a natural embryo, those same are in three dimensions talking to each other in a language that we barely understand," Rivron said.

The experiments mimicked that process, and the cells spontaneously began to arrange themselves as they might in the womb.

"The were the chatty ones here—they are instructing the placental stem cells to multiply, organise and implant into the uterus."

The findings could shed light on adult conditions that originate from small flaws in the embryo, including some forms of diabetes or cardiovascular disease, the study said.

The image is a picture of two blastoids, which are synthetic embryos formed in the lab, from stem cells. The green cells are the trophoblast stem cells (the future placenta), whereas the red cells are the embryonic stem cells (the future embryo). Credit: Nicolas Rivron

"This research opens the path to a new biomedical discipline," said co-author Clemens van Blitterswijk, a pioneer in tissue engineering and regenerative medicine at Maastricht University.

"We can create large numbers of model and build up new knowledge by systematically testing new techniques and potential medicines."

It also dramatically reduces the need for animal experimentation, he added.

Outside experts hailed the results.

"These findings may help us to understand more about some aspects of infertility and improve outcomes of assisted reproduction," commented Dusk Ilic, a reader in stem cell science at King's College London.

Harry Leith, Group Head at MRC London Institute of Medical Sciences, acknowledged the breakthrough, but cautioned that it was unlikely to be duplicated with human stem cells anytime soon.

The experiments "appears to be the most successful attempt so far reported to 'build' an early embryo exclusively from cultured stem cell lines," he said in a comment provided by the Media Science Centre.

"However, we have yet to produce human stem cell lines with properties similar to the used in this study.

Explore further: New type of stem cell line produced offers expanded potential for research and treatments

More information: Blastocyst-like structures generated solely from stem cells, Nature (2018). nature.com/articles/doi:10.1038/s41586-018-0051-0

Related Stories

New tools to study the origin of embryonic stem cells

March 23, 2017

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Recommended for you

Elephants resist cancer by waking a zombie gene

August 14, 2018

An estimated 17 percent of humans worldwide die from cancer, but less than five percent of captive elephants—who also live for about 70 years, and have about 100 times as many potentially cancerous cells as humans—die ...

Models give synthetic biologists a head start

August 14, 2018

Synthetic biologists have the tools to build complex, computer-like DNA circuits that sense or trigger activities in cells, and thanks to scientists at Rice University and the University of Houston they now they have a way ...

Cancer-fighting drugs also help plants fight disease

August 14, 2018

Cancer-fighting drugs used on humans can help plants fight disease as well. That discovery, by two Washington State University plant pathologists, could help scientists develop new pathways for plants to battle infection, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.