A soft solution to the hard problem of energy storage

May 18, 2018, Drexel University
Soft assembly of MXene allows the 2-D materials to be stacked vertically, maintaining ion diffusion as the thickness of the material is increased. Credit: Drexel University

It's great in the lab, but will it actually work? That's the million-dollar question perpetually leveled at engineering researchers. For a family of layered nanomaterials, developed and studied at Drexel University—and heralded as the future of energy storage—that answer is now, yes.

For some time, researchers have been working on using two-dimensional , atomically thin nanomaterials, as components for faster-charging, longer-lasting batteries and supercapacitors. But the problem with the existing techniques for doing so are that when the thickness of the material layer is increased to about 100 microns—roughly the width of a human hair, which is the industry standard for devices—the materials lose their functionality.

Recently published research from Drexel and the University of Pennsylvania, shows a new technique for manipulating that allows them to be shaped into films of a practically usable thickness, while maintaining the properties that make them exceptional candidates for use in supercapacitor electrodes.

The study, published in the journal Nature, focuses on using soft materials—similar to those in the liquid crystal displays of phones and televisions—as a guide for self-assembly of MXene sheets. MXenes, are a class of nanomaterials discovered at Drexel in 2011, that are particularly well-suited for energy storage.

"Our method relies on a marriage between soft material assembly and functional 2-D nanomaterials," said Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel's College of Engineering, who was a co-author of the research. "The resulting electrode films show rapid ion transport, outstanding rate handling, and charge storage equal to or exceeding commercial carbon electrodes."

An Open Channel

According to co-author Yu Xia, Ph.D., a postdoctoral fellow in Penn's School of Engineering and Applied Science, the challenge of maintaining the energy density (how much energy the devices can store) and power density (how fast the device can charge) of a charge storing material lies in maintaining clear channels for ion movement as the materials are scaled up to larger sizes.

"The ion diffusion problem in ," Xia says, "including batteries and supercapacitors, has been long recognized as one of the major issues impeding the industrial development of new batteries and supercapacitors with higher energy and power density. Conventionally, 2-D materials intend to stack on top of each other like sheets of paper in a book, resulting in a prolonged ion diffusion length, which suppresses their performance when the thickness of the electrode approaches industrial standards."

The team's method avoids this stacking problem, which inhibits ion diffusion, by propping the MXene flakes in the electrodes vertically. At the microscopic level, it might look something like standing up toothpicks in silly putty. In addition to getting them to align vertically, their orientation can also be adjusted by moving the soft material base.

The team's melding of assembly with hard materials yielded promising results for MXene's future as an energy storage material.

"MXene electrodes prepared by this method show normalized capacitance which is almost independent of thickness up to at least 200 microns, which is not the case for conventionally assembled electrodes, where the MXene flakes would be aligned parallel to the electrode surface," according to Tyler Mathis, a doctoral student in Drexel's Department of Materials Science and Engineering and co-author of the research, who performed all electrochemical testing of the materials.

Stand and Deliver

While "soft matter self-assembly"—the process by which molecules inside a material align themselves in an orientation that researchers can manipulate—has been around since the 1970s, and is now the driving force behind television, phone and laptop displays, combining it with hard materials is a significant breakthrough.

Although a couple of research groups have been able to engineer vertical alignment of materials using a top-down process, these routes are difficult to scale up for industrial applications.

"Our process is through self-assembly," said Shu Yang, Ph.D., a professor in the departments of Materials Science and Engineering, and Chemical and Biomolecular Engineering in Penn's School of Engineering and Applied Science and a co-author of the research. "So it's much cheaper and can be scalable over a large area. In the end, it's the concept of using soft materials with interesting alignment and ordering through assembly to align hard materials with interesting nanostructures and functionality that is the biggest breakthrough."

To get the 2-D material to undergo this process, the researchers used a surfactant, which can squeeze between the MXene layers to help them form a liquid crystal phase. The researchers then applied a mechanical shearing method to it, which forced the molecules to align the MXene films vertically. The vertical channels allow ions to move, or diffuse—which is the key to MXene's properties—even as the material is scaled up in thickness.

"There's a lot of fundamental knowledge in liquid crystals," Yang said. "People think it's an old technology, but we just keep rediscovering that this knowledge is actually very useful and applicable to new functional materials."

Next in Line

Although the researchers acknowledge that there are other challenges to overcome before the method can be used in real world devices, they believe their findings provide an exciting leap forward in the field. The long-term goals are to apply the method to supercapacitor and battery electrodes for powering mobile electronic devices, electric cars, and use in renewable energy harvesting technologies.

"It's a perfect marriage between soft matter self-assembly and nanomaterials," Xia says. "We're making a new world of these 2-D materials that can be used towards real industry applications, matching up with the industry standard and trying to make a real device out of it. After more than a decade of work in 2-D materials, we have found a way past one of the biggest barriers to application and are actually creating a system that is one of the most plausible ways to push these materials into industry."

Explore further: In the fast lane—conductive electrodes are key to fast-charging batteries

More information: Yu Xia et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes, Nature (2018). DOI: 10.1038/s41586-018-0109-z

Related Stories

'Chemical net' could be key to capturing pure hydrogen

January 29, 2018

Hydrogen is one of the most abundant elements on Earth and an exceptionally clean fuel source. While it is making its way into the fuel cells of electric cars, busses and heavy equipment, its widespread use is hampered by ...

Recommended for you

How fluid viscosity affects earthquake intensity

March 21, 2019

Fault zones play a key role in shaping the deformation of the Earth's crust. All of these zones contain fluids, which heavily influence how earthquakes propagate. In an article published today in Nature Communications, Chiara ...

Sustainable fisheries and conservation policy

March 21, 2019

There are roughly five times as many recreational fishers as commercial fishers throughout the world. And yet, the needs and peculiarities of these 220 million recreational fishers have largely been ignored in international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 19, 2018
that answer is now, yes.

Except no, because extremely high density supercapacitors are essentially electrostatic bombs. The situation is much worse than with regular galvanic batteries, because the recombination of charges can happen even faster when the insulator breaks.

You put a bullet through a battery and it catches fire. You put a bullet through a "hyper"capacitor and it detonates. Using capacitors for massive scale energy storage is a perfectly ludicurous concept - on par with storing energy in superconducting magnets. The failure modes are beyond catastrophic.

The only thing that compares is the failure of some rocket fuel producing facilities where the end result was like a small nuclear weapon had went off.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.