Scientists use Dorset, UK, as model to help find traces of life on Mars

May 15, 2018, Imperial College London
Acidic stream in Dungy Head, Lulworth Cove, on the eastern end of St Oswald's Bay, UK. Credit: Imperial College London.

Imperial College London scientists have found traces of fatty acids—key building blocks of biological cells—in Dorset's acidic streams. They say that because of the similarity of acidic streams in Dorset and on Mars, their findings hint that life might once have existed on Mars.

By applying their findings to the Red Planet, they concluded that there could be nearly 12,000 Olympic sized pools of organic matter on Mars that could represent traces of past .

Dorset is home to highly acidic sulphur streams that host bacteria which thrive in extreme conditions. One such environment, in St Oswald's Bay, mimics the conditions on Mars billions of years ago.

Researchers treated the landscape as a template for Mars and examined the organic matter preserved in rock deposits nearby. The iron-rich mineral goethite transforms to hematite which is very common on Mars and gives the planet its red colour. If these iron-rich minerals harbour traces of life on Earth, then they may hold clues to past microbial life on the Red Planet.

Their study found that goethite in St Oswald's Bay hosted many microbes as well as traces of their fossilised organic remains.

The authors applied these results to a Martian environment: Based on how much rock is from environments on Mars, and assuming the concentration of fatty acids found in Martian sediments matches that of Earth, there might be up to 2.86×1010 kg of fatty acids preserved within Martin rock—equivalent to nearly 12,000 Olympic-size pools.

Previous missions to find traces of life have used heat to inspect rock for the presence of organic matter. Scientists suspect the heat might have caused minerals to react with any organic matter, explaining why we haven't yet found traces of life.

However, heating goethite or hematite does not destroy any organic matter that's there, meaning these minerals could be good life-search targets.

Co-author Professor Mark Sephton, Head of Imperial's Department of Earth Science & Engineering said: "Mars harboured water billions of years ago, meaning some form of life might have thrived there. If life existed before the water dried up, it would probably have left remains that are preserved to this day in Martian rock.

"However, we have yet to find convincing traces of that would indicate previous life on the Red Planet."

Co-author Jonathan Tan, also from the Department of Earth Science & Engineering, said: "St Oswald's Bay is a present-day microcosm of middle-aged Mars. As the acid streams dry up, like during Mars' 'drying period', they leave goethite minerals behind which preserve fatty acids that act as biological signatures."

Professor Sephton added: "Now we should let Dorset's landscape guide our life detection efforts on the Red Planet.

The authors say that if we do find traces of life, it will probably be in the form bacteria that can thrive in extreme environments—like the acid streams on Earth.

They hope to programme the next life-searching mission to Mars, Mars 2020, to search for these dried up streams and inspect the sediment for traces of .

Explore further: Microbes living in a toxic volcanic lake could hold clues to life on Mars

More information: "The Fate of Lipid Biosignatures in a Mars-Analogue Sulfur Stream" by Jonathan Tan, James M. T. Lewis and Mark A. Sephton, published 15 May 2018 in Scientific Reports. www.nature.com/articles/s41598-018-25752-7

Related Stories

Life on Earth may date back 3.95 bn years: study

September 27, 2017

Rudimentary life may have existed on Earth 3.95 billion years ago, a time when our infant planet was being bombarded by comets and had hardly any oxygen, researchers said Wednesday.

Recommended for you

SpaceX gets nod to put 12,000 satellites in orbit

November 16, 2018

SpaceX got the green light this week from US authorities to put a constellation of nearly 12,000 satellites into orbit in order to boost cheap, wireless internet access by the 2020s.

Overflowing crater lakes carved canyons across Mars

November 16, 2018

Today, most of the water on Mars is locked away in frozen ice caps. But billions of years ago it flowed freely across the surface, forming rushing rivers that emptied into craters, forming lakes and seas. New research led ...

Electric blue thrusters propelling BepiColombo to Mercury

November 16, 2018

In mid-December, twin discs will begin glowing blue on the underside of a minibus-sized spacecraft in deep space. At that moment Europe and Japan's BepiColombo mission will have just come a crucial step closer to Mercury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.