Precise targeting technique could regulate gut bacteria, curtailing disease

May 2, 2018, American Chemical Society
Credit: American Chemical Society

Emerging evidence suggests that microbes in the digestive system have a big influence on human health and may play a role in the onset of disease throughout the body. Now, in a study appearing in ACS Chemical Biology, scientists report that they have potentially found a way to use chemical compounds to target and inhibit the growth of specific microbes in the gut associated with diseases without causing harm to other beneficial organisms.

The digestive system is crammed with trillions of bacteria, fungi, and other that help process food. Recent studies suggest that the changes in these , or microbiome, may play a role in the onset of a host of diseases and conditions including obesity, diabetes, cancer, allergies, asthma, autism and multiple sclerosis. Antibiotics can help regulate the microbiome, but bacterial resistance is on the rise. In addition, antibiotics can wipe out some of the organisms that contribute to a healthy microbiome, and the microbes that take their place can sometimes cause more harm than good. Researchers have also investigated using probiotics and fecal transplants to resolve some of these problems. But to date, few have really looked at using non-microbicidal small molecules to alter the microbiome in a targeted way to improve health. To help fill this gap, Daniel Whitehead, Kristi Whitehead and colleagues sought to use a chemical compound to precisely target and disrupt the metabolic processes of members of the Bacteroides genus, a group of bacteria commonly found in the gut that appear to be associated with the onset of type I diabetes in genetically susceptible individuals.

In laboratory studies, the researchers found that small concentrations of acarbose, a drug used to treat diabetes, significantly disrupted the activity of a group of proteins involved in the Starch Utilization System (Sus). The model bacteria called Bacteroides thetaiotaomicron (Bt), as well as other Bacteroides members, have this system. With Sus inhibited, Bt couldn't metabolize a pair of complex carbohydrates that are not digested by humans once they reach the colon, but that are vital to the survival of the microbes. As a result, the bacteria cannot grow. The team found that acarbose was specific, having similar effects on another Bacteroides bacteria, but little or no effect on other types of . The researchers conclude that with further study it may be possible to develop drugs that target with pinpoint accuracy to permanently alter the composition of the microbiome and, in turn, prevent or treat disease.

Explore further: Commonly used drugs affect gut bacteria

More information: Anthony D. Santilli et al. Nonmicrobicidal Small Molecule Inhibition of Polysaccharide Metabolism in Human Gut Microbes: A Potential Therapeutic Avenue, ACS Chemical Biology (2018). DOI: 10.1021/acschembio.8b00309

Abstract
A new approach for the nonmicrobicidal phenotypic manipulation of prominent gastrointestinal microbes is presented. Low micromolar concentrations of a chemical probe, acarbose, can selectively inhibit the Starch Utilization System and ablate the ability of Bacteroides thetaiotaomicron and B. fragilis strains to metabolize potato starch and pullulan. This strategy has potential therapeutic relevance for the selective modulation of the GI microbiota in a nonmicrobicidal manner.

Related Stories

Commonly used drugs affect gut bacteria

March 19, 2018

One in four drugs with human targets inhibit the growth of bacteria in the human gut. These drugs cause antibiotic-like side-effects and may promote antibiotic resistance, EMBL researchers report in Nature on March 19.

Got starch? There's bacteria in your gut for that

February 1, 2018

Soft foods like white bread and rice might seem like an easy thing for your body to digest, but a tiny organism in your gut is actually responsible for chowing down some types of starch and turning it into nutrients your ...

Mammals shape their microbiome to prevent disease

January 13, 2016

Gut microbes are well known to contribute to health and disease, but what has been less clear is how the host controls gut microbes. A study published January 13 in Cell Host & Microbe now reveals that mice and humans produce ...

Gut fungi could play a role in obesity epidemic

October 11, 2017

A high-fat diet changes fungi in the gut and may play a role in the development of obesity, according to a new study in mSphere, a journal of the American Society for Microbiology. While gut microbes have previously been ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.