Researchers levitate water droplets to improve contaminant detection

May 3, 2018, Optical Society of America
Researchers used sound waves to levitate droplets of water. This approach allows the water to evaporate, which concentrates the sample for spectroscopic detection of harmful heavy metal contaminants such as lead and mercury in water. Credit: Jairo Peralta and Victor Contreras, Instituto de Ciencias Físicas UNAM

In a new study, researchers showed that using sound waves to levitate droplets of water in midair can improve the detection of harmful heavy metal contaminants such as lead and mercury in water. Detecting small amounts of heavy metals in water is important because these contaminants are harmful to human health and the environment. The new technique could eventually lead to instruments that perform real-time, on-site contaminant monitoring, which could help prevent future lead contamination problems like the Flint, Michigan, water crisis or detect contaminated wastewater from industrial sites.

"Despite the large variety of sensors that offer continual monitoring, detection of multiple dissolved in water can only be performed by sending samples off for specialized laboratory ," said the research team leader Victor Contreras, from Instituto de Ciencias Físicas UNAM, Mexico. "Our is one step toward the development of a simpler analysis approach that could be applied on-site and in real time. This type of water analysis could be used by agricultural, pharmaceutical, water purification and other industries to monitor water for contaminants."

In The Optical Society (OSA) journal Optics Letters, the researchers detail their new approach, which uses a sensitive technique known as laser induced breakdown spectroscopy (LIBS) to analyze heavy metals present in levitating drops of water. Levitating the water droplets allows the water to evaporate in a controlled position, which increases the mass concentration of contaminants in the sample and makes it easier to perform LIBS analysis. The researchers showed that their new approach can reliably detect very low levels of the heavy metals like barium, cadmium and mercury with analysis times of just a few minutes.

Using LIBS on liquids

The researchers used LIBS because it offers a fast and straightforward way to identify several elements simultaneously. LIBS works by focusing a high energy laser pulse onto a sample, which vaporizes the material and generates a plasma. Because the light emitted by the plasma contains the atomic fingerprints of the material, it is possible to identify the chemical components of the sample by analyzing the emitted light.

It is a straightforward process to use LIBS analysis on solid samples. In fact, several commercially available handheld devices are available for this type of analysis. However, it is difficult to use this method to directly analyze liquids because the plasma formed in liquids cools down faster and lasts a very short time. In addition, producing a plasma on a liquid surface produces water splashes that directly affect the spectroscopy reading.

The water droplet was analyzed with laser induced breakdown spectroscopy, which uses a high energy laser pulse to vaporize the sample and generate a plasma. The light emitted by the plasma can be detected and used to identify the chemical components of the sample. Credit: Victor Contreras, Instituto de Ciencias Físicas UNAM

With liquid samples, creating a plasma that provides a good signal for chemical detection requires high levels of laser energy, which can only be provided by bulky, non-portable lasers. To circumvent this problem, liquid samples are typically analyzed by placing a drop on a substrate and waiting for it to dry in order to concentrate the elements of interest in the sample. Although depositing the sample on a substrate is quite simple, the laser pulse excites atoms from elements in the sample as well as from the substrate. Besides, water evaporation could lead to inhomogeneous distribution of the impurities on the substrate, compromising its signal reproducibility.

Instead of depositing the droplets onto a substrate, the researchers used intense sound waves to levitate single droplets of water. The produce a force strong enough to counteract gravity, allowing a droplet to hover unsupported in the air.

"Acoustic levitation is a simple and inexpensive method to preconcentrate the elements of interest while avoiding contamination from the substrate surface," said Contreras. "Moreover, it does not require the sample to have any type of electric or magnetic response like some other methods used to achieve levitation."

Analyzing droplets

In the paper, the researchers showed that using acoustic waves to levitate a single drop of water allowed them to detect very low concentrations of heavy metals. For example, they detected 0.7 milligrams per liter of cadmium and 0.2 milligrams per liter of barium. They also showed that the technique they used is stable enough for reproducible LIBS analysis.

"This technology has a potential to simultaneously detect heavy metals and other elements in water in a fast and cost-effective way," said Contreras. "An online analyzer based on our technology could one day help prevent environmental disasters and contribute to improved water quality control."

The researchers are now working to improve the instrumentation. For example, they want to optimize the mechanical design of the acoustic trap to achieve more stable levitation conditions, which will improve the reproducibility of the LIBS readings. They also want to increase the sensitivity by stably levitating smaller drops, which further concentrates the contaminants. This is a key step toward miniaturizing the device because it will allow the use of less sensitive, but more compact detectors.

Explore further: New approach to improve detection of landfill-related pollution

More information: Victor Contreras et al, Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy, Optics Letters (2018). DOI: 10.1364/OL.43.002260

Related Stories

Removing heavy metals from water with MOFs

March 14, 2018

An estimated 1 billion people do not have access to clean drinking water, a problem expected to worsen with climate change, according to the World Health Organization. In addition, higher energy needs and increased use of ...

Improving the sensitivity for ionic solutes analysis

February 1, 2018

Researchers from Kumamoto University in Japan have developed a new method to improve the sensitivity of analytical systems for ionic solutes, such as water from rivers and lakes, or even tap water. Clean water is important ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.