Researchers operate lab-grown heart cells by remote control

May 18, 2018, University of California - San Diego
The present and the future: the current study can lead to optical cardiac pacemakers. Credit: Nanotools Bioscience

Researchers at University of California San Diego School of Medicine and their collaborators have developed a technique that allows them to speed up or slow down human heart cells growing in a dish on command—simply by shining a light on them and varying its intensity. The cells are grown on a material called graphene, which converts light into electricity, providing a more realistic environment than standard plastic or glass laboratory dishes.

The method, described in the May 18 issue of Science Advances, could be used for a number of research and clinical applications, including: testing therapeutic drugs in more biologically relevant systems, developing use-specific drugs that are more precise and have fewer systemic effects, and creating better medical devices, such as light-controlled pacemakers.

"When we first got this working in our lab, suddenly we had something like 20 people gathering around, shouting things like 'Impossible!' and accusing me of pranking them. We'd never seen anything like this before," said first author Alex Savchenko, Ph.D., a research scientist in the Department of Pediatrics at UC San Diego School of Medicine and Sanford Consortium for Regenerative Medicine. Savchenko led the study with Elena Molokanova, Ph.D., CEO of Nanotools Bioscience.

While in some ways simply a thinner version of graphite ("pencil lead"), 's unique properties were only truly appreciated relatively recently, an effort recognized with the 2010 Nobel Prize in Physics, awarded to Andre Geim, Ph.D., and Kostantin Novoselov, Ph.D., both physicists at the University of Manchester in the United Kingdom. Graphene is a semi-metal made up of a latticework of carbon atoms, the same element that forms the basis of all living organisms. Part of what makes graphene special is its ability to efficiently convert light into electricity. In contrast, glass and plastic are insulators—they don't conduct electricity. Most biomedical research relies on individual cells or cell cultures grown in plastic petri dishes or on glass plates.

"Yet in your body, you don't see many surfaces acting like plastic or glass," Savchenko said. "Instead, we're conductive. Our hearts are extremely good at conducting electricity. In the brain, it's electric conductivity that allows me to think and talk at the same time."

Mouse heart cells grown on graphene beat at a rate controlled by light stimulation (as indicated by a green circle at top left corner). Here, the cells are also engineered to produce a red fluorescent protein when stimulated by green light. Credit: UC San Diego Health

Savchenko, Molokanova and other researchers have noted that cells in the lab grow better on graphene than other materials, and behave more like cells do in the body. Savchenko and Molokanova credit their backgrounds in physics for helping them look at biological systems a little differently than most.

In this study, the researchers generated from donated skin cells, via an intermediary cell type called an induced pluripotent stem cell (iPSC). Then they grew these iPSC-derived heart cells on a graphene surface.

Savchenko said it took the team awhile to pin down the optimal graphene-based formulation. Then they had to find the best light source and way to deliver that light to the graphene-cell system. But they eventually found a way to precisely control how much electricity the graphene generated by varying the intensity of the light to which they exposed it.

"We were surprised at the degree of flexibility, that graphene allows you to pace cells literally at will," Savchenko said. "You want them to beat twice as fast? No problem—you just increase the light intensity. Three times faster? No problem—increase the light or graphene density."

Savchenko and colleagues found they could likewise control heart activity in a living organism (zebrafish embryos) using light and dispersed graphene.

The team was also surprised at the absence of toxicity, which often presents researchers with a huge challenge. "Normally, if you introduce a new material in biology, you'd expect to see a certain number of cells killed in the process," Savchenko said. "But we didn't see any of that. It makes us hopeful that we'll be able to avoid harmful problems later on, as we test various medical applications."

The researchers are excited about the many possible applications for this new graphene/light system. One potential use is in drug screening. Currently, researchers use robotic technology to test hundreds of thousands of chemical compounds, screening them for their abilities to change a cell's behavior. Those compounds that have the desired effect are further studied for their potential as a new therapeutic drug. However, many beneficial compounds might be missed because their effects aren't readily apparent in the condition in which the test cells are grown—on plastic, outside of the disease context.

For example, researchers can test drugs on heart cells grown in a standard plastic laboratory dish. But those cells are contracting at their own pace, not modeling the conditions that might exist right before a person has a heart attack. The drugs they test on those cells might not appear to do anything if they are use-dependent—meaning the drugs only have an effect under certain conditions.

To test this application, the team added mexiletine, a medication used to treat irregular heartbeats (arrhythmias), to their heart cells. Mexiletine is known for being use-dependent—it only has an effect when there is an increase in heart rate, such as occurs during an arrhythmia. The researchers illuminated their heart cells on graphene with light of different intensities. The faster they got the heart cells to beat, the better mexiletine inhibited them.

For now, the team is focused on cells and neurons. But they are interested in eventually applying their graphene/light system to search for drugs that specifically kill cancer cells, while leaving healthy alone. The researchers also envision using graphene to find opioid alternatives—use-dependent pain medications that only work when and where a person is in pain, thus reducing systemic effects than can lead to misuse and addiction. Finally, Savchenko believes -controlled pacemakers made of graphene could be safer and more effective than current models.

There's a lot of work to do, but Savchenko is optimistic. "You can squeeze a half-year of animal experiments into a day of experiments with this graphene-based system," he said.

Explore further: The photoexcited graphene puzzle solved

More information: A. Savchenko el al., "Graphene biointerfaces for optical stimulation of cells," Science Advances (2018). DOI: 10.1126/sciadv.aat0351 ,

Related Stories

The photoexcited graphene puzzle solved

May 14, 2018

Light detection and control lies at the heart of many modern device applications, such as the cameras in phones. Using graphene as a light-sensitive material for light detectors offers significant improvements with respect ...

Turning graphene into light nanosensors

April 25, 2018

Graphene has many properties; it is e.g. an extremely good conductor. But it does not absorb light very well. To remedy this limiting aspect of what is an otherwise amazing material, physicists resort to embedding a sheet ...

Graphene material strengthens nerve signaling in the brain

March 2, 2018

Less than 20 years after it was developed, a thin, resilient sheet of carbon atoms with remarkable properties known as graphene is transforming biomedical fields as far flung as tissue engineering, neuroprosthetics and drug ...

Researchers developing 2-D materials similar to graphene

February 2, 2018

Chemists are working to synthesize the next generation of super materials for high-performance electronics, solar cells, photodetectors and quantum computers. While they have made progress with compound materials, they have ...

Recommended for you

Engineers produce smallest 3-D transistor yet

December 10, 2018

Researchers from MIT and the University of Colorado have fabricated a 3-D transistor that's less than half the size of today's smallest commercial models. To do so, they developed a novel microfabrication technique that modifies ...

New traffic rules in 'Graphene City'

December 6, 2018

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. In work published today (Dec 7) in the journal Science, a team ...

Artificial synapses made from nanowires

December 6, 2018

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to save and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.