Flowerlike nanostructures in sodium batteries

May 8, 2018, Wiley
Flowerlike nanostructures in sodium batteries

Sodium-ion batteries (SIB) are hot candidates for a cheap and sustainable battery technology, but a recurring issue is anode instability. A Chinese team of scientists now reports the preparation of a submicron-size structured anode composite material that can accommodate large volume changes. The antimony sulfide electrode is easily prepared and exhibits superior capacity and cycling performance, as shown in a study published in the European Journal of Inorganic Chemistry.

In contrast to lithium ion batteries (LIBs), rely on readily available and sustainable raw . One of the main reasons why SIBs are not yet widely applied is instability: The large ion cannot integrate as easily in the electrodes as the small lithium ion, causing significant expansion and shrinkage of the structures during the discharging/charging events. This problem particularly refers to the anode, which simply pulverizes during longer cycling periods. Only if this issue becomes solved, a truly working sodium ion battery can be developed. Now, Guangda Li and his colleagues at Qilu University of Technology, Jinan, China, have combined micro- and nanostructured materials with state-of-the-art battery chemistry. They assembled an anode composite material that, through its flower-like submicrostructure, can mitigate the drastic volume changes while still showing improved conductivity and capacity. Moreover, it was easily prepared, the scientists reported.

Antimony, or, even better, sulfide, are attractive anode materials for SIBs. Their very high theoretical specific capacities result from the count of as much as three sodium atoms per antimony to be incorporated in the structure upon discharging (which in battery terms is sodiation), when the antimony sulfide first forms sodium sulfide and then antimony alloys. To reduce the effects of the large volume changes, microstructuring to a size between nano- and bulk materials has been proposed. In this regard, the Jinan scientists prepared spherical particles of antimony sulfide having two to three microns in diameter. A closer look revealed that the surface was composed of numerous thin sheets grown together to construct flowerlike structure. This "bunch of flowers" might serve as an effective buffer against volume changes, but its conductivity and diffusion paths are still too low for battery applications.

Therefore, the authors coated it with a carbon layer made of polypyrrole polymer. "The PPy coating layers not only serve as the structural stabilizer [...], but can also enhance the conducting of antimony submicrospheres," they explained. The final composite material had a well-defined shape and met the technical demands of a high-performance . The authors also emphasized that their preparation method was a straightforward sol–gel technology starting from antimony acetate (which leaves no harmful chloride in the end product) in combination with a smoothly proceeding polymerization/coating step.

This work signifies the recent advances made on battery technology. It shows that the combination of nanoengineering strategies with electrochemistry may lead to products that can complement or substitute current lithium-ion technology.

Explore further: Team develops sodium ion batteries using copper sulfide

More information: Tian Zheng et al. Flowerlike Sb2S3 /PPy Microspheres Used as Anode Material for High-Performance Sodium-Ion Batteries, European Journal of Inorganic Chemistry (2018). DOI: 10.1002/ejic.201701364

Related Stories

Team develops sodium ion batteries using copper sulfide

April 18, 2018

A KAIST research team recently developed sodium ion batteries using copper sulfide anode. This finding will contribute to advancing the commercialization of sodium ion batteries (SIBs) and reducing the production cost of ...

Making sodium-ion batteries that last

February 15, 2017

Lithium-ion batteries have become essential in everyday technology. But these power sources can explode under certain circumstances and are not ideal for grid-scale energy storage. Sodium-ion batteries are potentially a safer ...

New metal alloy electrode designed for plus-sized ions

April 4, 2012

(PhysOrg.com) -- Storing energy from wind farms and releasing that electricity on demand requires high-capacity, low-cost batteries; sodium-ion batteries could be part of the answer now, thanks to fundamental insights garnered ...

Sodium-ion battery packs a punch

April 5, 2018

A new sodium-ion battery chemistry that shows superior performance to existing state-of-the-art sodium-based batteries could be the catalyst to enabling mass-production of the emerging technology for large-scale energy storage, ...

Graphene unlocks the promise of lithium sulfur batteries

December 18, 2017

Many battery scientists are interested in the potential of lithium sulfur batteries because, at least in theory, they offer a high energy density at relatively low cost. However, lithium sulfur batteries face a number of ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.