Comparing the chemistry of water isomers

May 29, 2018, University of Basel
Pre-sorted ortho-water and para-water molecules with differently oriented nuclear spins (blue or red arrows) react with diazenylium ions (center left) at different speeds. Credit: University of Basel

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two different forms (isomers) at the molecular level. The difference lies in the relative orientation of the nuclear spins of the two . Depending on whether the spins are aligned in the same or opposite direction, one refers to ortho- or para-water.

Experiments with sorted water molecules

The research group headed by Professor Stefan Willitsch from the University of Basel's Department of Chemistry has investigated how the two forms of water differ in terms of their chemical reactivity—their ability to undergo a chemical reaction. Both isomers have almost identical physical properties, which makes their separation particularly challenging.

This separation was made possible by a method based on electric fields developed by Professor Jochen Küpper from the Hamburg Center for Free-Electron Laser Science. Using this approach, the researchers were able to initiate controlled reactions between the "pre-sorted" water isomers and ultracold diazenylium ions ("protonated nitrogen") held in a trap. During this process, a diazenylium ion transfers its proton to a water molecule. This reaction is also observed in the chemistry of interstellar space.

Increased reactivity

It was demonstrated that para-water reacts about 25 percent faster than ortho-water. This effect can be explained in terms of the nuclear spin also influencing the rotation of the . As a result, different attractive forces act between the reaction partners. Para- is able to attract its reaction partner more strongly than the ortho-form, which leads to an increased chemical reactivity. Computer simulations confirmed these experimental findings.

In their experiments, the researchers worked with molecules at very low temperatures close to the absolute zero point (about -273°C). These are ideal conditions to precisely prepare individual quantum states and define the energy content of the molecules, and to cause a controlled reaction between them. Willitsch explains the experimental approach: "The better one can control the states of the involved in a reaction, the better the underlying mechanisms and dynamics of a can be investigated and understood."

Explore further: Scientists find new way to detect ortho-para conversion in water

More information: Ardita Kilaj et al, Observation of different reactivities of para and ortho-water towards trapped diazenylium ions, Nature Communications (2018). DOI: 10.1038/s41467-018-04483-3

Related Stories

Separation of para and ortho water

September 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. In the journal ...

Researchers 'cage' water to see it change form

June 16, 2014

(Phys.org) —Scientists are using a pioneering method of 'caging' and cooling water molecules to study the change in orientation of the magnetic nuclei at the centre of each hydrogen atom - a process which transforms the ...

Water caged in buckyballs

May 20, 2014

In a new paper in the Journal of Chemical Physics, a research team in the United Kingdom and the United States describes how water molecules "caged" in fullerene spheres ("buckyballs") are providing a deeper insight into ...

Reaction rate of many molecules depends on their shape

October 3, 2013

Most molecules occur in several shapes, which may behave very differently. Using a sorting machine for molecules, a German–Swiss research team can now for the first time directly measure the various reaction rates of different ...

Recommended for you

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.