Flow of cerebrospinal fluid regulates division

May 18, 2018, Ludwig Maximilian University of Munich
Flow of cerebrospinal fluid regulates division
Image from a confocal microscope showing so-called pin-wheel structure of the lateral wall of the lateral ventricle: ENaC-positive adult neural stem cell (red) surrounded by ependymal cells. Credit: Helmholtz Zentrum München

Stem cells in the brain can divide and mature into neurons participating in various brain functions, including memory. In a paper scientists have discovered that the flow of cerebrospinal fluid is a key signal for neural stem cell renewal.

The ancient Greek aphorism panta rhei means "everything flows", a phrase used by philosophers to describe the constant flux and interplay between the past and renewal. A recent paper lends this relationship a whole new meaning: a team of researchers headed by Professor Magdalena Götz and their collaborators from the LMU (Professor Benedikt Grothe, Chair of Neurobiology) and the Henrich-Heine University Düsseldorf have discovered that the flow of is a key signal for neural stem cell renewal.

"Neural in the brain can divide and mature into neurons and this process plays important roles in various regions of the brain – including olfactory sense and memory," explains Magdalena Götz, Head of LMU Department of Physiological Genomics and Director of the Institute for Stem Cell Research at Helmholtz Zentrum München. "These are located in what is known as the neurogenic stem cell niche one of which is located at the walls of the lateral ventricles, where they are in contact with circulating cerebrospinal fluid."

The cerebrospinal fluid fills the brain and its roles are still ill understood. This work highlights the role of this fluid as a key signal – but this time not a chemical but a physical signal. Götz and her team, under the guidance of lead author Dr. David Petrik, discovered that are also influenced by the physical forces of the fluid flow.

Channel protein plays a key role

"The whole mechanism is controlled by the ENaC molecule," Petrik explains. This abbreviation stands for epithelial sodium (Na) channel and describes a channel protein on the cell surface through which stream into the cell's interior. "We were able to show in an experimental model that brain stem cells are no longer able to divide in the absence of ENaC. Conversely, a stronger ENaC function promotes cell proliferation."

Further tests showed that the function of ENaC is augmented by shear forces exerted on the cells by the cerebrospinal fluid. The physical stimulation causes the to open for longer time and allow sodium ions to flow into the cell, thus stimulating division.

"The results came as a big surprise, since ENaC had previously only been known for its functions in the kidneys and lungs," says study leader Götz. She and her team now want to better explore the fast signals mediated by ions in stem cells and clarify the extent to which the findings are also relevant to treatment. After all, pharmacological ENaC blockers are already used clinically to relieve certain types of hypertension. Now, it is known that they can also influence stem cells in the brain and thus brain function.

Explore further: Researchers clarify the identity of brain stem cells

More information: David Petrik et al. Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent Manner, Cell Stem Cell (2018). DOI: 10.1016/j.stem.2018.04.016

Related Stories

Researchers clarify the identity of brain stem cells

May 4, 2018

The human nervous system is a complex structure that sends electrical signals from the brain to the rest of the body, enabling us to move and think. Unfortunately, when brain cells are damaged by trauma or disease they don't ...

Limited self-renewal of stem cells in the brain

March 11, 2015

Stem cells in the brain can produce neurons and are consequently seen as a hope for treatment. A team of researchers from the Helmholtz Zentrum München and Ludwig-Maximilians-Universität München (LMU) has now discovered ...

Recommended for you

DNA islands effective as 'anti-bacterial drones'

September 24, 2018

Genomic "islands" that evolved from viruses can be converted into "drones" that disable Staphylococcus aureus, bacteria that are often resistant to antibiotics and pose a threat to safe hospital care, a new study finds.

Burst of morning gene activity tells plants when to flower

September 24, 2018

For angiosperms—or flowering plants—one of the most important decisions facing them each year is when to flower. It is no trivial undertaking. To flower, they must cease vegetative growth and commit to making those energetically ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

Silver fox study reveals genetic clues to social behavior

September 24, 2018

In 1959, Russian scientists began an experiment to breed a population of silver foxes, selecting and breeding foxes that exhibited friendliness toward people. They wanted to know if they could repeat the adaptations for tameness ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.