Study shows ceramics can deform like metals if sintered under an electric field

May 29, 2018 by Kayla Wiles, Purdue University
Purdue researchers observed for the first time how ceramics formed under an electric field surprisingly change shape rather than break when compressed at high strain. Pictured: Graduate research assistants Jaehun Cho and Qiang Li. Credit: Purdue University image/Vincent Walter

Purdue researchers have observed a way that the brittle nature of ceramics can be overcome as they sustain heavy loads, leading to more resilient structures such as aircraft engine blade coatings and dental implants.

While inherently strong, most ceramics tend to fracture suddenly when just slightly strained under a load unless exposed to . Structural components also require high temperatures to form in the first place through a lengthy process called sintering, in which a powdered material coalesces into a solid mass.

These issues are particularly problematic for ceramic coatings of metal engine blades intended to protect metal cores from a range of operational temperatures. A study published in Nature Communications demonstrates for the first time that applying an electric field to the formation of yttria-stabilized zirconia (YSZ), a typical thermal barrier ceramic, makes the material almost as plastic, or easily reshaped, as metal at room temperature. Engineers could also see cracks sooner since they start to slowly form at a moderate temperature as opposed to higher temperatures, giving them time to rescue a structure.

"In the past, when we applied a high load at lower temperatures, a large number of ceramics would fail catastrophically without warning," said Xinghang Zhang, professor of . "Now we can see the cracks coming, but the material stays together; this is predictable failure and much safer for the usage of ceramics."

Recent studies have shown that applying an , or "flash," significantly accelerates the sintering process that forms YSZ and other ceramics, and at much lower furnace temperatures than conventional sintering. Flash-sintered ceramics also have very little porosity, which makes them more dense and therefore easier to deform. None have yet tested the ability of flash-sintered ceramics to change shape at room or increasingly higher temperatures.

"YSZ is a very typical thermal barrier coating—it basically protects a metal core from heat," said Haiyan Wang, Purdue's Basil S. Turner Professor of Engineering. "But it tends to suffer from a lot of fractures when an engine heats up and cools down due to residual stresses."

What allows metals to be fracture-resistant and easy to change shape is the presence of "defects," or dislocations—extra planes of atoms that shuffle during deformation to make a material simply deform rather than break under a load.

Applying an electric field to ceramics during their formation gives them the metal-like characteristics needed for sustaining heavy loads without sudden collapse. Credit: Purdue University image/Jaehun Cho

"These dislocations will move under compression or tension, such that the material doesn't fail," said Jaehun Cho, a graduate research assistant in materials engineering.

Ceramics normally don't form dislocations unless deformed at very high temperatures. Flash-sintering them, however, introduces these dislocations and creates a smaller grain size in the resulting material.

"Smaller grains, such as nanocrystalline grains, may slide as the ceramic material deforms, helping it to deform better," Wang said.

Pre-existing dislocations and small grain sizes enabled a flash-sintered YSZ sample thinner than human hair to grow increasingly plastic between and 600 degrees Celsius when compressed, with cracks starting to slowly spread at 400 degrees as opposed to conventionally sintered YSZ that requires 800 degrees and higher to plastically deform.

Improved plasticity means more stability during operation at relatively low temperatures. The sample could also withstand almost as much compression strain as some metals do before cracks started to appear.

"Metals can be compressed to 10 or 20 percent strain, no problem, but ceramics often fracture into pieces if you compress them to less than 2-3 percent strain," Zhang said. "We show that flash-sintered ceramics can be compressed to 7-10 percent without catastrophic fracture."

Even when the sample did begin to crack, the cracks formed very slowly and did not result in complete collapse as would typically happen with conventional ceramics. The next steps would be using these principles to design even more resilient ceramic .

The researchers would not have been able to perform in-situ experiments of a micron-sized ceramic sample without an in-situ nanomechanical testing tool inside a high-resolution scanning electron microscope equipped with a focused iron beam tool at Purdue's Life Science Microscopy Center and an FEI Talos 200X electron microscope facility in Purdue's Materials Engineering facility. Both microscopes were provided by Purdue's Office of the Executive Vice President for Research and Partnerships and the Colleges of Engineering and Science. Purdue is expecting an even higher-resolution aberration-corrected microscope that the researchers will soon use for future nanomaterials research.

Explore further: Cold sintering of ceramics instead of high-temperature firing

More information: Jaehun Cho et al, High temperature deformability of ductile flash-sintered ceramics via in-situ compression, Nature Communications (2018). DOI: 10.1038/s41467-018-04333-2

Related Stories

Cold sintering of ceramics instead of high-temperature firing

August 16, 2016

Both hobbyists' pottery and engineered high-performance ceramics are only useable after they are fired for hours at high temperatures, usually above 1000 °C. The sintering process that takes place causes the individual particles ...

Optical ceramic meets metal-organic frameworks

February 7, 2018

Ceramic, a kind of poly-crystalline monolith sintered by inorganic, non-metallic crystallites, is normally opaque due to defects, voids and birefringence. Eliminating the inner light scatter creates transparent or optical ...

Rapid ceramic-metal processing for superior composites

January 19, 2017

Recent advancements in automotive, aerospace and power generation industries have inspired materials scientists to engineer innovative materials. Ceramic metal composites, or cermets, are an example of a new and improved ...

Recommended for you

The environmental cost of contact lenses

August 19, 2018

Many people rely on contact lenses to improve their vision. But these sight-correcting devices don't last forever—some are intended for a single day's use—and they are eventually disposed of in various ways. Now, scientists ...

When sulfur disappears without trace

August 17, 2018

Many natural products and drugs feature a so-called dicarbonyl motif— in certain cases, however, their preparation poses a challenge to organic chemists. In their most recent work, Nuno Maulide and his coworkers from the ...

Microfluidic chip for analysis of single cells

August 17, 2018

A few little cells that are different from the rest can have a big effect. For example, individual cancer cells may be resistant to a specific chemotherapy—causing a relapse in a patient who would otherwise be cured. In ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TogetherinParis
not rated yet Jun 02, 2018
Electric fields order molecular arrays. Easily seen in aqueous samples so exposed. Once the field is released, the molecular arrays oscillate out, AND THEN BACK INTO FORMATION. This is the basis of the T wave in electro-cardiography, seen when no electrogenic activity takes place.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.