Black holes play hide-and-seek in low-luminosity radio galaxies

May 24, 2018, Canadian Astronomical Society

Every galaxy is thought to harbor a supermassive black hole in the center, or nucleus, of the galaxy, and in active galaxies this black hole is fed by infalling matter. This "central engine" is typically surrounded by dusty molecular gas in a doughnut configuration, which hides the black hole and the infalling material from our view along certain viewing directions. The picture of a central engine plus obscuring doughnut is thought to apply to all accreting supermassive black holes, explaining the apparent variety of active galaxies from the very brightest quasars to the lower-luminosity radio galaxies under a single "unified scheme."

However, it has long been known that the weaker have properties inconsistent with this model, lacking evidence for bright accretion structures and obscuring doughnuts, leading to suggestions that either their black holes or their gas infall mechanisms might be unique. New results from researchers at the University of Manitoba, presented today at the 2018 annual meeting of the Canadian Astronomical Society, show that up to one-third of weak radio may in fact have glowing infalling gas with their black holes hidden by dusty doughnuts that shine in the infrared.

To discern this, R. Gleisinger, C. O'Dea, J. Gallimore, S. Baum, and S. Wykes fit the Infrared spectrum of a sample of weak radio galaxies with several components including stars, gas, dust, and a dusty torus using special techniques. They found that one-third of the radio galaxies show the classic central engines with accretion structures and doughnuts. They suggest that for the weaker , the properties of the central engine are changing dramatically and rapidly. While the in these galaxies are typically on a diet with low feeding rates, they may periodically go on an occasional binge during which a much larger mass of gas flows into the central black hole causing the creation of the standard bright accretion structure and obscuring torus.

Explore further: Rotating gaseous donut around an active supermassive black hole

Related Stories

DRAGNs in the sky

September 9, 2014

A radio galaxy is a galaxy that emits large amounts of radio waves. They were first discovered in the 1950s, but it wasn't until the 1960s when a technique known as aperture synthesis was developed that we could resolve the ...

Supermassive black holes feed on cosmic jellyfish

August 16, 2017

An Italian-led team of astronomers used the MUSE (Multi-Unit Spectroscopic Explorer) instrument on the Very Large Telescope (VLT) at ESO's Paranal Observatory in Chile to study how gas can be stripped from galaxies. They ...

Merging galaxies have enshrouded black holes

May 10, 2017

Black holes get a bad rap in popular culture for swallowing everything in their environments. In reality, stars, gas and dust can orbit black holes for long periods of time, until a major disruption pushes the material in.

Recommended for you

HESS J1943+213 is an extreme blazar, study finds

June 21, 2018

An international group of astronomers have carried out multi-wavelength observations of HESS J1943+213 and found evidence supporting the hypothesis that this gamma-ray source is an extreme blazar. The finding is reported ...

The Rosetta stone of active galactic nuclei deciphered

June 21, 2018

A galaxy with at least one active supermassive black hole – named OJ 287 – has caused many irritations and questions in the past. The emitted radiation of this object spans a wide range – from the radio up to the highest ...

'Red nuggets' are galactic gold for astronomers

June 21, 2018

About a decade ago, astronomers discovered a population of small, but massive galaxies called "red nuggets." A new study using NASA's Chandra X-ray Observatory indicates that black holes have squelched star formation in these ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.