Biologists ID temporal logic of regulatory genes affecting nitrogen use efficiency in plants

May 14, 2018, New York University
Credit: CC0 Public Domain

A team of biologists and computer scientists has adopted a time-based machine-learning approach to deduce the temporal logic of nitrogen signaling in plants from genome-wide expression data. The work potentially offers new ways to monitor and enhance crop growth using less nitrogen fertilizer, which would benefit human nutrition and the environment.

The research, which appears in the journal Proceedings of the National Academy of Sciences (PNAS), centers on gene regulatory networks (GRNs) that identify which serve to regulate genes needed to respond to nitrogen, which is a nutrient vital to plant development and .

"By constructing these regulatory networks based on dynamic gene responses to nitrogen treatment, we can see, in time-lapse detail, the genetic process necessary for the intake of nitrogen and its conversion into amino acids used in the synthesis of all N-containing compounds including DNA, proteins and chlorophyll" explains Gloria Coruzzi, a professor in New York University's Department of Biology and Center for Genomics and Systems Biology and the paper's senior author. "Armed with these new insights, we can now look ahead for ways to bolster the efficiency of food production and enrich sustainable agriculture measures on lower nitrogen input, which would benefit the environment."

The study also included researchers from Purdue University, the University of Illinois at Urbana Champaign, Cold Spring Harbor Laboratory, and the French National Institute for Agricultural Research.

The research exploited time—the fourth and largely unexplored dimension of GRNs—with the aim of better elucidating the transcription factors (TFs) relevant to genetic responses to nitrogen. Specifically, understanding how transcription factors function at different points in time can allow scientists to target the early responders and to make predictions on the temporal operation of the entire .

This time-based GRN now provides a wealth of regulatory knowledge to inform testable hypotheses on how 155 transcription factors exert regulatory control of response and its effect on core plant life processes, such as circadian rhythm, photosynthesis, and RNA metabolism, among other phenomena affecting plant growth, development and yield.

Explore further: Photosynthesis in plants key to speedy evolution

More information: Kranthi Varala el al., "Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1721487115

Related Stories

Photosynthesis in plants key to speedy evolution

April 24, 2018

In a study of 11 different plant species, published in Molecular Biology and Evolution, researchers at the University of Oxford have shown that the speed at which plants evolve is linked to how good they are at photosynthesis.

Faba fix for corn's nitrogen need

April 11, 2018

Researchers have good news for growers. Farmers raising a nitrogen-hungry crop like sweet corn may save up to half of their nitrogen fertilizer cost. The key: using a faba bean cover crop.

Corn hybrids with high yields come with more variability

April 9, 2018

The agriculture industry is in a tough spot; it's simultaneously tasked with feeding a growing population and minimizing its environmental footprint. For corn breeders, that means improving nitrogen-use efficiency and crowding ...

Using networks to understand tissue-specific gene regulation

October 27, 2017

Researchers at Brigham and Women's Hospital have discerned that different tissue functions arise from a core biological machinery that is largely shared across tissues, rather than from their own individual regulators. In ...

Study sheds light on how plants get their nitrogen fix

February 16, 2018

Legumes are a widely consumed family of plants that serve as a significant source of dietary protein, fiber, and other essential nutrients. They obtain nitrogen through a specialized process known as nodulation, a symbiotic ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Basking sharks can jump as high and as fast as great whites

September 20, 2018

A collaborative team of marine biologists has discovered that basking sharks, hundreds of which are found off the shores of Ireland, Cornwall, the Isle of Man and Scotland, can jump as fast and as high out of the water as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.