20-year-old mystery of malaria vaccine target solved

April 9, 2018, Wellcome Trust Sanger Institute
Credit: CDC

The human piece of a malaria infection puzzle has been revealed for the first time, solving a long-standing mystery. A protein displayed on the surface of malaria parasites called "TRAP" is a high-priority vaccine target, but how it interacts with human host cells has remained a puzzle. Scientists from the Wellcome Sanger Institute have discovered a receptor protein on the surface of human cells that the TRAP protein interacts with as it navigates through the body.

The results, published today (9 April) in PNAS could help improve the development of an effective vaccine.

Nearly half of the world's population is at risk of malaria and more than 200 million people are infected each year. The disease caused the deaths of almost half a million people globally in 2015*.

Malaria is caused by Plasmodium parasites that are transmitted to people through the bites of infected mosquitoes. Once the parasites have migrated from the mosquito bite site in the human skin, they must then navigate their way to a blood vessel and through the blood stream before finally infecting the liver for the next stage of the lifecycle. However, the molecular cues between the parasites and human host which direct this migration have remained unclear, making it challenging to intervene and stop the parasites in their tracks.

In this study, scientists from the Wellcome Sanger Institute have shown for the first time that the malaria parasite surface , TRAP, interacts directly with proteins called integrins on the surface of .

Dr Kirsten Dundas, first author from the Wellcome Sanger Institute, said: "For the first time, we've found a human receptor for the high-priority malaria vaccine target, TRAP. The TRAP protein on the surface of malaria parasites has been studied for the last 20 years, but a major unanswered question was how it interacted with human cells. Disrupting this interaction could be a key strategy for blocking malaria parasites' journey through human tissues to prevent infection."

The team dissected and extracted malaria parasites in the transmission stage of the lifecycle, known as sporozoites. It is the sporozoites that are transmitted to a person after being bitten by an infected mosquito. They then navigate through the skin to a blood vessel, where they travel in the bloodstream to the liver, invade liver cells and develop to the next stage of the lifecycle.

To investigate which receptors on the surface of human cells the sporozoites interact with as they travel through the body, the team tested the TRAP protein against a panel of human proteins known to be expressed on . The scientists used a technique developed at the Sanger Institute called AVEXIS which is designed to detect the typically fleeting interactions between proteins displayed at the surface of cells. This approach revealed that the parasite TRAP protein interacted with human alpha-v-beta-3 integrins. It is possible the integrins act as sign posts along the ' journey to the liver.

Dr Gavin Wright, lead author from the Wellcome Sanger Institute, said: "We have discovered a human receptor for the malaria parasite TRAP protein, and have provided an example which demonstrates that sporozoite surface proteins can directly interact with human cell surface receptors. This provides an important first clue in mapping the guidance cues that the must use to locate and invade the human liver."

Explore further: Malaria Cell Atlas launched: Parasite development mapped in unprecedented detail

More information: Kirsten Dundas el al., "Alpha-v–containing integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1719660115

*Malaria statistics: www.who.int/features/factfiles/malaria/en/

Related Stories

Malaria vaccine target's invasion partner uncovered

February 10, 2017

A team at the Wellcome Trust Sanger Institute has discovered how a promising malarial vaccine target - the protein RH5 - helps parasites to invade human red blood cells. Published today in Nature Communications, the study ...

Human antibodies undermine parasite sex

February 8, 2018

Some people develop an immune response following a malaria infection that stops them from infecting other mosquitoes. The antibodies that these people produce are ingested by the mosquito and destroy the malaria parasite ...

Recommended for you

Japan to make crater on asteroid to get underground samples

March 18, 2019

Japan's space agency said Monday that its Hayabusa2 spacecraft will follow up last month's touchdown on a distant asteroid with another risky mission—dropping an explosive on the asteroid to make a crater and then collect ...

Bright X-ray galactic nuclei

March 18, 2019

All massive galaxies are believed to host supermassive black holes (SMBH) at their centers that grow by accreting mass from their environment. The current picture also imagines that the black holes grow in size as their host ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Apr 09, 2018
Yes, We may be able to avoid getting Malaria in the future.
But, Mosquitoes will always be there and will keep biting us forever !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.