Tubular science improves polymer solar cells

April 10, 2018, US Department of Energy
Illustration of a three-component blend polymer-based solar cell: (1) polymer plates (pink), (2) fullerene (a.k.a. buckyballs, grey spheres) active components, and (3) a columnar polymer (dark grey columns) that promotes self-assembly of efficient, columnar charge collection pathways (green arrows). Credit: US Department of Energy

A popular polymer-based solar cell could produce more energy if the electronic charges can move efficiently through the cell's components. A novel three-component mixture allows conductive solar cell materials to self-align into columns. The alignment improves the efficiency. This, in turn, allows the solar cells to be fabricated more than three times thicker without degrading the high performance. The greater depth makes the process more compatible with conventional industrial coating processes.

Reliable manufacturing. High performance. The internal architectures formed by this new blend of three components has potential to make these materials more amenable to reliable manufacturing. The devices can be made at greater thicknesses. These depths are better suited for conventional industrial processes but still allow the cell to maintain its high performance.

Low-cost, large-area scalability by solution processing is an important advantage of organic . Typical organic solar , however, require active layer thicknesses of less than 100 nanometers (about 0.000004 inches) for optimal performance, due to the limitations of polymer semiconductor charge carrier mobility. This presents a significant challenge for solution-based manufacturing—large-area coating technologies (for example, roll-to-roll or slot-die coatings) are unable to provide reliable films at such thin dimensions.

The Center for Nanoscale Materials and Stony Brook University team demonstrated that adding a third polymer component to the binary blend of organic leads to a self-assembled columnar nanostructure. This enhanced the charge mobility and photovoltaic in devices with layer thicknesses of more than 300 nanometers—more than three times thicker than typical. Detailed experimental studies and simulations reveal that interfacial tension between the polymeric components is crucial for obtaining the self-assembled columnar nanoarchitecture that provides efficient charge extraction pathways. Practically, this ternary blend organic solar cell architecture has potential to enable reliable large-area manufacturing because the devices can be made thicker for conventional industrial coating processes.

Explore further: Perovskite technology is scalable, but questions remain about the best methods

More information: Hongfei Li et al. A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase, Nanoscale (2017). DOI: 10.1039/C7NR03789A

Related Stories

A simple new approach to plastic solar cells

January 25, 2018

Humankind is in the midst of a massive drive to harness solar energy to power our homes, gadgets, and industry. Plastic solar cells, based on blends of conducting organic polymers, are of interest for making lightweight and ...

Saving the planet with flexible electronics

June 27, 2017

"My research on organic photovoltaic (OPVs) devices reflects my fascination with electronic gadgets and concerns about the environment," says Varun Vohra, tenure-track assistant professor at the Department of Engineering ...

Recommended for you

Scientists create gold nanoparticles in water

April 19, 2018

An experiment that, by design, was not supposed to turn up anything of note instead produced a "bewildering" surprise, according to the Stanford scientists who made the discovery: a new way of creating gold nanoparticles ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.