Stellar dust survey paves way for exoplanet missions

April 26, 2018 by Calla Cofield, Jet Propulsion Laboratory
This artist's illustration shows what the sky might look like from a planet in a particularly dusty solar system. Dust that orbits a star in the plane of the solar system is called zodiacal dust, and the light reflected and scattered by that dust is called zodiacal light. Credit: NASA/JPL-Caltech

Veils of dust wrapped around distant stars could make it difficult for scientists to find potentially habitable planets in those star systems. The Hunt for Observable Signatures of Terrestrial Systems, or HOSTS, survey was tasked with learning more about the effect of dust on the search for new worlds. The goal is to help guide the design of future planet-hunting missions. In a new paper published in the Astrophysical Journal, HOSTS scientists report on the survey's initial findings.

Using the Large Binocular Telescope Interferometer, or LBTI, on Mount Graham in Arizona, the HOSTS determines the brightness of warm floating in the orbital planes of other stars (called exozodiacal dust). In particular, HOSTS has studied dust in nearby stars' habitable zones, where liquid water could exist on the surface of a planet. The LBTI is five to 10 times more sensitive than the previous telescope capable of detecting exozodiacal dust, the Keck Interferometer Nuller.

Among the findings detailed in the new paper, the HOSTS scientists report that a majority of sun-like stars in their survey do not possess high levels of dust—good news for future efforts to study potentially-habitable planets around those stars. A final report on the full HOSTS survey results is expected early next year.

More information about the new findings from HOSTS and the search for Earthlike planets beyond our solar system: phys.org/news/2018-04-nasa-sur … stone-astronomy.html.

The Large Binocular Telescope Interferometer, or LBTI, is a ground-based instrument connecting two 8-meter class telescopes on Mount Graham in Arizona to form the largest single-mount telescope in the world. The interferometer is designed to detect and study stars and planets outside our solar system. Credit: NASA/JPL-Caltech

The LBTI is funded by NASA's Exoplanet Exploration Program office and managed by the agency's Jet Propulsion Laboratory in Pasadena, California. JPL is a division of Caltech, also in Pasadena. Six JPL scientists co-authored the new research paper. The LBTI is an international collaboration among institutions in the U.S., Italy and Germany, and it is managed and headquartered at the University of Arizona in Tucson.

NASA is taking a multifaceted approach to finding and studying planets outside our solar system. On April 18, NASA launched its newest planet-hunting observatory, the Transiting Exoplanet Survey Satellite (TESS), which is expected to find thousands of new exoplanets, mostly around smaller than our sun.

Explore further: NASA survey seen as steppingstone for astronomy

More information: S. Ertel et al. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars, The Astronomical Journal (2018). DOI: 10.3847/1538-3881/aab717 , https://arxiv.org/abs/1803.11265

Related Stories

NASA survey seen as steppingstone for astronomy

April 2, 2018

Imagine trying to see a firefly next to a distant spotlight, where the beams from the spotlight all but drown out the faint glow from the firefly. Add fog, and both lights are dimmed. Is the glow from the firefly still visible ...

Telescope to seek dust where other Earths may lie

January 22, 2015

The NASA-funded Large Binocular Telescope Interferometer, or LBTI, has completed its first study of dust in the "habitable zone" around a star, opening a new door to finding planets like Earth. Dust is a natural byproduct ...

Recommended for you

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.