Silk-based devices with antisense-miRNA therapeutics may enhance bone regeneration

April 24, 2018, Mary Ann Liebert, Inc
Credit: Mary Ann Liebert, Inc., publishers

Researchers have incorporated therapeutic microRNAs (miRNAs) into bioresorbable, silk-based medical devices such as screws and plates to achieve local delivery of factors that can improve bone growth and mineralization at the site of bone repair. The study, which demonstrated the promise of silk-based orthopedic devices combined with bioactive miRNA-based therapeutics, is published in Tissue Engineering, Part A.

Eric James, Emily Van Doren, Chunmei Li, and David Kaplan, Tufts University, Medford, MA describe the method they used to deliver the antisense therapeutic miR-214 in the article entitled "Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices." The article is part of an upcoming special issue of Tissue Engineering on "RNA Therapeutics for Tissue Engineering" led by Guest Editors Elizabeth Balmayor, PhD, Technical University of Munich, Germany and Christopher Evans, PhD, DSc, Mayo Clinic, Rochester, MN.

The researchers coated the surface of bioresorbable silk-based devices used in with antisense-miR-214 and also studied the use of antisense-miR-214 silk films seeded with human mesenchymal stem cells (hMSCs). The results showed that miR-214 was released continuously for up to 7 days in vitro and could block the production of proteins that downregulate new bone formation.

"This study leverages principles for the design of medical devices with enhanced biocompatibility," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.

Explore further: Spider silk key to new bone-fixing composite

More information: Eric James et al, Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices, Tissue Engineering Part A (2018). DOI: 10.1089/ten.TEA.2017.0455

Related Stories

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Recommended for you

Wearable device measures cortisol in sweat

July 20, 2018

The hormone cortisol rises and falls naturally throughout the day and can spike in response to stress, but current methods for measuring cortisol levels require waiting several days for results from a lab. By the time a person ...

Researchers report two-faced Janus membrane applications

July 20, 2018

Named for the mythical god with two faces, Janus membranes—double-sided membranes that serve as gatekeepers between two substances—have emerged as a material with potential industrial uses. Creating two distinct "faces" ...

Chemists characterize the fatal fungus among us

July 19, 2018

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, ...

Infrared sensor as new method for drug discovery

July 19, 2018

Using an infrared sensor, biophysicists at Ruhr-Universität Bochum (RUB) have succeeded in analysing quickly and easily which active agents affect the structure of proteins and how long that effect lasts. Thus, Prof Dr. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.