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A scalable deep learning approach for
massive graphs

April 30 2018, by Jie Chen
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Figure 1: Expanding the neighborhoods starting from the brown node in the
middle. First expansion: green; second: yellow; third: red.

A graph structure is extremely useful for predicting properties of its
constituents. The most successful way of performing this prediction is to
map each entity to a vector through the use of deep neural networks.
One may infer the similarity of two entities based on the vector
closeness. A challenge for deep learning, however, is that one needs to
gather information between an entity and its expanded neighborhood
across layers of the neural network. The neighborhood expands rapidly,
making computation very costly. To resolve this challenge, we propose a
novel approach, validated through mathematical proofs and experimental
results, that suggest that it suffices to gather the information of only a
handful of random entities in each neighborhood expansion. This
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substantial reduction in neighborhood size renders the same quality of
prediction as state-of-the-art deep neural networks but cuts training cost
by orders of magnitude (e.g., 10x to 100x less computation and resource
time), leading to appealing scalability. Our paper describing this work,
"FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling," will be presented at ICLR 2018. My co-authors
are Tengfei Ma and Cao Xiao.

Complexity of graph analysis

Graphs are universal representations of pairwise relationship. In real-
world applications, they come in a variety of forms, including for
example, social networks, gene expression networks, and knowledge
graphs. A trending subject in deep learning is to extend the remarkable
success of well-established neural network architectures for Euclidean
structured data (such as images and texts) to irregularly structured data,
including graphs. The graph convolutional network, GCN, is one such
excellent example. It generalizes the concept of convolution for images,
which may be considered a grid of pixels, to graphs that no longer look
like a regular grid.

The 1dea behind GCN is very simple. Those of us who took Signal
Processing 101 or a basic computer vision course are already familiar
with the concept of a convolution filter. For images, it is a small matrix
of numbers, to be multiplied elementwise with a moving window of the
image, with the resulting product-sum replacing the center number of the
window. For graphs, this is similar. A good combination of the filters
may detect primitive local structures, such as lines in different angles,
edges, corners, and spots of a certain color. For graphs, convolutions are
similar. Imagine that each graph node is initially attached with a vector.
For each node, the vectors of the neighbors are summed (with certain
weights and transforms) into it. Hence, all the nodes are simultaneously
updated, performing a layer of forward propagation. Graph convolutions
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may be used to propagate information through neighborhoods so that
global information is disseminated to each graph node.

The problem of GCN is that for a network with multiple layers, the
neighborhood is quickly expanded, involving many vectors to be
summed together, for even just one single node. Such a computation is
prohibitively costly for graphs with a large number of nodes. How large
will an expanded neighborhood look like? In social network analysis,
there is a famous concept coined "six degrees of separation," which
states that one may reach any other person on the Earth through six
intermediate connections! Figure 1 illustrates that starting from the
brown node in the center, expanding the neighborhood three times (in
the order of green, yellow, and red) will touch almost the whole graph. In
other words, updating the vector of the brown node alone is troublesome
for a GCN with as few as three layers.

Figure 2: Starting from the same brown node, in each neighborhood expansion,
we sample four nodes only.

Simplifying for scalability
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We propose a simple yet powerful fix, called FastGCN. If expanding the
neighborhood fully is costly, why not expand on only a few neighbors
each time? Figure 2 illustrates the concept. Starting from the brown
node, in every expansion we pick a constant number (four) of nodes and
sum over the vectors from them only. The sampling substantially reduces
the cost for training the neural network, by reducing training time by
orders of magnitude on benchmark data sets commonly used by
researchers. Yet, predictions remain comparably accurate. The size of
these benchmark graphs ranges from a few thousand nodes to a few
hundred thousand nodes, confirming the scalability of our method.

Behind this intuitive approach is a mathematical theory for the
approximation of the loss function. A layer of the network may be
summarized as a matrix multiplication: H'=s(AHW), where A is the
adjacency matrix of the graph, each row of H is the vector attached to
the nodes, W is a linear transformation of the vectors (also interpreted as
the model parameter to be learned), and the rows of H' contains the
updated vectors. We generalize this matrix multiplication to an integral
transform h'(v)= s(0A(v,u)h(u)W dP(u)) under a probability measure P.
Then, the sampling of a fixed number of neighbors in each expansion is
nothing but a Monte Carlo approximation of the integral under the
measure P. The Monte Carlo approximation yields a consistent estimator
of the loss function; hence, by taking the gradient, we can use a standard
optimization method (such as stochastic gradient descent) to train the
neural network.

An array of deep learning applications

Our approach addresses a key challenge in deep learning for large-scale
graphs. It applies to not only GCN but also many other graph neural
networks built on the concept of neighborhood expansion, an essential
component of graph representation learning. We foresee that the
resolution of the challenge in this fundamental data
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structure—graphs—will be adopted in a wide array of applications,
including the analysis of social networks, the deep insight into protein-
protein interactions for drug discovery, and the curation and discovery of
information in knowledge bases.

More information: FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling.
arxiv.org/abs/1801.10247
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