Want computers to see better in the real world? Train them in virtual reality

April 11, 2018, Chinese Association of Automation

Scientists have developed a new way to improve how computers "see" and "understand" objects in the real world by training the computers' visual systems in a virtual environment.

The research team published their findings in IEEE/CAA Journal of Autmatica Sinica, a joint publication of the IEEE and the Chinese Association of Automation.

For computers to learn and accurately recognize objects such as buildings, streets or humans, the machines must rely on processing huge amount of labeled data, in this case, images of objects with accurate annotations. A self-driving car, for instance, needs thousands of images of roads and cars to learn from. Datasets therefore play a crucial role in the training and testing of the computer . Using manually labeled training datasets, a computer vision system compares its current situation to known situations and takes the best action, whatever that happens to be.

"However, collecting and annotating images from the real world is too demanding in terms of labor and money investments," writes first author Kunfeng Wang, an associate professor at China's State Key Laboratory for Management and Control for Complex Systems. Wang says the goal of their research is to overcome limitations of real-world image datasets, which are insufficient for training and testing computers vision systems.

To solve this issue, Wang and his colleagues created a called ParallelEye. ParallelEye was virtually generated by using commercially available computer software, specifically the video game engine Unity3D. Using a map of Zhongguancun, one of the busiest urban areas in Beijing, China, as their reference, they virtually recreated urban setting by adding buildings, cars and even weather conditions. Then they placed a virtual "camera" on a virtual car. The car drove around the virtual Zhongguancun and created datasets that are representative of the real world.

Through their "complete control" of the , Wang's team was able to create extremely specific usable data for their object detection system—a simulated autonomous vehicle. The results were impressive, producing a marked increase in performance on nearly every tested metric. By designing custom-made datasets, a greater variety of autonomous systems will be more practical to train.

While their greatest performance increases came from incorporating ParallelEye datasets with datasets, Wang's team has demonstrated that their method is capable of easily creating diverse sets of images. "Using the ParallelEye vision framework, massive and diversified images can be synthesized flexibly, and this can help build more robust computer vision systems," says Wang. The research team's proposed approach can be applied to many visual computing scenarios, including visual surveillance, medical image processing, and biometrics.

Next, the team will create an even larger set of , improve the realism of virtual images, and explore the utility of virtual images for other computer vision tasks. Wang says, "Our ultimate goal is to build a systematic theory of parallel vision able to train, test, understand and optimize models with virtual images and make the models work well in complex scenes."

Explore further: CMU-SV Professor uses The Matrix to train drones in tracking objects

More information: Yonglin Tian et al, Training and testing object detectors with virtual images, IEEE/CAA Journal of Automatica Sinica (2018). DOI: 10.1109/JAS.2017.7510841

Related Stories

Computers using linguistic clues to deduce photo content

July 21, 2017

Scientists at Disney Research and the University of California, Davis have found that the way a person describes the content of a photo can provide important clues for computer vision programs to determine where various things ...

Computers can perceive image curves like artists

November 23, 2015

Imagine computers being able to understand paintings or paint abstract images much like humans. Bo Li at Umeå University in Sweden demonstrates a breakthrough concept in the field of computer vision using curves and lines ...

Recommended for you

Permanent, wireless self-charging system using NIR band

October 8, 2018

As wearable devices are emerging, there are numerous studies on wireless charging systems. Here, a KAIST research team has developed a permanent, wireless self-charging platform for low-power wearable electronics by converting ...

Facebook launches AI video-calling device 'Portal'

October 8, 2018

Facebook on Monday launched a range of AI-powered video-calling devices, a strategic revolution for the social network giant which is aiming for a slice of the smart speaker market that is currently dominated by Amazon and ...

Artificial enzymes convert solar energy into hydrogen gas

October 4, 2018

In a new scientific article, researchers at Uppsala University describe how, using a completely new method, they have synthesised an artificial enzyme that functions in the metabolism of living cells. These enzymes can utilize ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.