NASA's new space 'botanist' arrives at launch site

April 18, 2018 by Esprit Smith, NASA
NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) arrives at Kennedy Space Center in preparation for launch to the space station this summer. Credit: NASA/JPL-Caltech/KSC

A new instrument that will provide a unique, space-based measurement of how plants respond to changes in water availability has arrived at NASA's Kennedy Space Center in Florida to begin final preparations for launch to the International Space Station this summer aboard a cargo resupply mission.

NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) left NASA's Jet Propulsion Laboratory in Pasadena, California, on April 6 by ground transport and arrived at Kennedy Space Center on April 9.

A few days after it reaches the space station, ECOSTRESS will be robotically installed on the exterior of the station's Japanese Experiment Module Exposed Facility Unit.

ECOSTRESS will give us new insights into plant health by quantifying the temperature of from as never before, measuring regions as small as 230 feet (70 meters) on a side, or about the size of a small farm. It will do this by estimating how much plants are releasing to cool themselves (i.e., evapotranspiration—the equivalent of sweating in humans). This will tell us how much water different plants use and need, and how they react to environmental stresses caused by water shortages. ECOSTRESS will estimate how much water moves through and out of plants by tracking how the temperatures of plants change. The data from its minimum one-year mission will be used by ecologists, hydrologists, agriculturalists, meteorologists and other scientists.

NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is inspected after arrival at Kennedy Space Center. Credit: NASA/JPL-Caltech/KSC

"Most satellite measurements of plant surface temperature are made at a particular time of day, often in the mid-morning, when plants are not stressed," said Simon Hook, the project's principal investigator at JPL. "ECOSTRESS takes advantage of the 's orbit to obtain measurements at different times of day, allowing us to see how plants respond to water stress throughout the day."

Until now, scientists addressing this question globally have had to estimate how that same-time-of-day snapshot varies over the course of a day. ECOSTRESS promises to eliminate much of this guesswork.

NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be installed on International Space Station's Japanese Experiment Module - External Facility (JEM-EF) site 10. The investigation will take advantage of the space station's orbit to measure plant surface temperatures at different times of day, allowing scientists to see how plants respond to water stress throughout the day. Credit: NASA/JPL-Caltech/KSC

ECOSTRESS is expected to provide key insights into how plants link Earth's global carbon and water cycles. ECOSTRESS data will be used in conjunction with other satellite and ground measurements, such as those from NASA's Orbiting Carbon Observatory-2 satellite. By doing this, scientists hope to understand more clearly the total amount of carbon dioxide plants remove from the atmosphere during a typical day. In addition, they hope to better identify which areas on the planet require more or less water for the amount of carbon dioxide they take up.

In practical terms, the year of data gleaned from ECOSTRESS will be useful for agricultural water managers. This data should improve our understanding of how certain regions are affected by drought and help agricultural and water management communities better manage water use for agriculture. The high ground spatial resolution of ECOSTRESS data will be useful for research on the effects of drought on agriculture at the field-scale.

Explore further: New NASA insights into the secret lives of plants

Related Stories

New NASA insights into the secret lives of plants

November 20, 2017

From rainforests to croplands, boreal forests to mangroves, NASA will take a new look at terrestrial vegetation across our living planet over the next two years with several unique instruments in space. The missions will ...

Video: The sweet smell of life support

April 4, 2018

When NASA astronaut Kjell Lindgren blasted off from Kazakhstan in July of 2015 for his first expedition aboard the International Space Station, he had some lofty expectations:

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

Hubble paints picture of the evolving universe

August 16, 2018

Astronomers using the ultraviolet vision of NASA's Hubble Space Telescope have captured one of the largest panoramic views of the fire and fury of star birth in the distant universe. The field features approximately 15,000 ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.