NASA engineers dream big with small spacecraft

April 20, 2018 by Andrew Good, Jet Propulsion Laboratory
An artist's rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats—a kind of modular, mini-satellite—attempting to fly to another planet. Credit: NASA/JPL-Caltech

Many of NASA's most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo—all large machines that could measure up to a school bus.

But in the past two decades, mini-satellites called CubeSats have made space accessible to a new generation. These briefcase-sized boxes are more focused in their abilities and have a fraction of the mass—and cost—of some past titans of space.

In May, engineers will be watching closely as NASA launches its first pair of CubeSats designed for deep space. The twin spacecraft are called Mars Cube One, or MarCO, and were built at NASA's Jet Propulsion Laboratory in Pasadena, California.

Both MarCO spacecraft will be hitching a ride on the same rocket launching InSight, NASA's next robotic lander headed for Mars. The MarCOs are intended to follow InSight on its cruise through space; if they survive the journey, each is equipped with a folding high-gain antenna to relay data about InSight as it enters the Martian atmosphere and lands.

The MarCOs won't produce any science of their own, and aren't required for InSight to send its data back home (the lander will rely on NASA's Mars orbiters for that, in addition to communicating directly with antennas on Earth). But the twins will be a crucial first test of CubeSat technology beyond Earth orbit, demonstrating how they could be used to further explore the solar system.

Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. Credit: Jet Propulsion Laboratory

"These are our scouts," said Andy Klesh of JPL, MarCO's chief engineer. "CubeSats haven't had to survive the intense radiation of a trip to before, or use propulsion to point their way towards Mars. We hope to blaze that trail."

The official names of these two scouts are "MarCO-A" and "MarCO-B." But to the team that built them, they're "Wall-E" and "Eva"—nicknames based on Pixar characters. Both MarCOs use a compressed gas commonly found in fire extinguishers to push themselves through space, the same way Wall-E did in his 2008 film.

Survival is far from guaranteed. As the saying goes: space is hard. The first challenge will be switching on. The MarCO batteries were last checked in March by Tyvak Nano-Satellite Systems of Irvine, California, which inserted each CubeSat into a special dispenser that will propel it into . Those batteries will be used to deploy each CubeSat's solar arrays, with the hope that enough power will be left over to turn on their radios. If power is too low, the MarCO team may hear silence until each spacecraft is more fully charged.

Joel Steinkraus, MarCO lead mechanical engineer from JPL, makes an adjustment on the CubeSat prior to integration in a deployment box as seen inside the cleanroom lab at Cal Poly San Luis Obispo on Monday, March 12. Credit: NASA/JPL-Caltech/Tyvak/Cal Poly SLO

If both MarCOs make the journey, they'll test a method of communications relay that could act as a "black box" for future Mars landings, helping engineers understand the difficult process of getting spacecraft to safely touch down on the Red Planet. Mars landings are notoriously hard to stick.

The MarCOs could also prove that CubeSats are ready to go beyond Earth. CubeSats were first developed to teach university students about satellites. Today, they're a major commercial technology, providing data on everything from shipping routes to environmental changes.

NASA scientists are eager to explore the solar system using CubeSats. JPL even has its own CubeSat clean room, where several flight projects have been built, including the MarCOs. For young engineers, the thrill is building something that could potentially reach Mars in just a matter of years rather than a decade.

One of the MarCO CubeSats inside a cleanroom at Cal Poly San Luis Obispo, before being placed into its deployment box. Credit: NASA/JPL-Caltech/Tyvak/Cal Poly SLO

"We're a small team, so everyone gets experience working on multiple parts of the spacecraft," Klesh said. "You learn everything about building, testing and flying along the way. We're inventing every day at this point."

The MarCOs were built by JPL, which manages InSight and MarCO for NASA. They were funded by both JPL and NASA's Science Mission Directorate. A number of commercial suppliers provided unique technologies for the MarCOs. A full list, along with more information about the , can be found here.

NASA's Mars Cube One, or MarCO, is heading to deep space to test a first-of-its-kind technology demonstration: near-real-time communication between Earth and Mars using CubeSats. Credit: Jet Propulsion Laboratory

Explore further: NASA prepares for first interplanetary CubeSats on agency's next mission to Mars

Related Stories

CubeSats in deep space

November 3, 2015

(Phys.org)—Tiny spacecraft have their ambitions of space exploration too. The small-sized satellites called CubeSats, made of box-shaped four-inch units, are successfully operating in the low Earth orbit, conducting a variety ...

NASA ready to study heart of Mars

March 30, 2018

NASA is about to go on a journey to study the interior of Mars. The space agency held a news conference today at its Jet Propulsion Laboratory (JPL) in Pasadena, California, detailing the next mission to the Red Planet.

A box of 'black magic' to study Earth from space

November 8, 2016

Black magic. That's what radiofrequency engineers call the mysterious forces guiding communications over the air. These forces involve complex physics and are difficult enough to master on Earth. They only get more baffling ...

NASA InSight mission to Mars arrives at launch site

March 1, 2018

NASA's InSight spacecraft has arrived at Vandenberg Air Force Base in central California to begin final preparations for a launch this May. The spacecraft was shipped from Lockheed Martin Space, Denver, today and arrived ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.