Nanoparticles developed to improve magnetic resonance scan images

April 30, 2018, Asociacion RUVID
Credit: Asociación RUVID

Researchers at the Chemical Technology Institute (ITQ) of the Unviersitat Politècnica de València and collaborating institutions have developed nanoparticles that improve the contrast in magnetic resonance scan images. Measuring 90 nanometres, their clinical use could facilitate the diagnosis of hepatic, pulmonary and cardiovascular pathologies, as well as many types of tumours. Their work has been published in Nanoscale.

Pablo Botella, head scientist at the CSIC's Chemical Technology Institute, explains that magnetic resonance imagery is a clinical diagnostic of great importance. "However, obtaining high-quality images is usually difficult due to a lack of contrast and other changes associated with the various pathologies that are being studied, which can lead to a loss of sensitivity and complicate the diagnosis."

In order to tackle these shortcomings, contrast agents based on soluble gadolinium (Gd³+) chelates are commonly administered intravenously. These agents make certain hidden body structures or tissues visually discernible. These changes are temporary and facilitate the clinical diagnosis, but the use of these products may not be advisable in some cases, specifically in allergic patients or those with kidney problems. "Furthermore, even though gadolinium improves the positive contrast of the images (clear areas), it hardly affects negative contrast (dark areas). In this sense, the use of a non-soluble form of gadolinium combined with a dark contrast agent would avoid these problems, and this is what we have developed in this project," explains Botella.

Hybrid nanoparticles

The research team, coordinated by the Nanomedicine group of the ITQ headed by Pablo Botella, has developed hybrid nanoparticles that contain two , gadolinium (Gd3+, which increases positive contrast) and iron (Fe3+, which raises negative contrast), protected by a stable silica cover. Comprising a structure with a high level of bundling, the nanoparticles cause a synergic effect that notably increases their magnetic activity, leading to a larger increase of positive and negative contrast in compared to commercial products.

Moreover, the cover makes it possible to add molecules that stabilise the particles in physiological environments such as polyethylene glycol, as well as molecules that will direct the product to a specific therapeutic target. In this respect, "nanoparticles can selectively accumulate on certain pathological tissues, as long as there is an appropriate guiding molecule. This would be useful for the diagnosis of several types of cancer; we are currently working on its use for prostate cancer, and are obtaining positive results," adds Botella.

The results obtained in animals makes it possible to clearly observe that after the intravenous administration of this new contrast agent, there is a significant improvement of positive and negative contrast in tissues where the nanoparticles accumulate.

On the other hand, says Eduardo Fernández of the Bioengineering Institute of the UMH and CIBER BBN, "our results suggest that this new type of contrast agent based on is not toxic for the animals in which it was tested, and the are completely eliminated through biliary and kidney activity, which attests to its great potential."

"The results obtained on an animal model suggest a variable improvement of up to 78 percent of the signal intensity in images depending on the tissue, making clinical diagnosis easier," concludes Pablo Botella. The signal intensity increase involves a raise in , which in turn improves resolution, allowing the radiologist to clearly differentiate between pathological tissue and background noise.

Explore further: Better contrast agents based on nanoparticles

Related Stories

Better contrast agents based on nanoparticles

August 3, 2016

Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than the ...

Why we need erasable MRI scans

April 25, 2018

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is through the use of contrast agents—magnetic dyes injected into ...

New MRI contrast agent tested on big animals

July 31, 2017

The top causes of death worldwide, ischemic heart diseases and stroke, together with another major source of illness, that is cancer, require proper imaging of blood vessels. A team formed by the Center for Nanoparticle Research, ...

MRI contrast agents accumulate in the brain

August 7, 2017

The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast agents during MRI scans. Emerging research suggests gadolinium-based contrast agents, injected in a patient's ...

Better insight into brain anatomical structures

June 15, 2007

Magnetic resonance imaging is a very effective method for revealing anatomical details of soft tissues. Contrast agents can help to make these images even clearer and allow physiological processes to be followed in real time. ...

Recommended for you

X-ray triggered nano-bubbles to target cancer

July 16, 2018

Innovative drug filled nano-bubbles, able to be successfully triggered in the body by X-rays, have been developed by researchers, paving the way for a new range of cancer treatments for patients.

Smart window controls light and heat, kills microorganisms

July 13, 2018

A new smart window offers more than just a nice view—it also controls the transmittance of sunlight, heats the interiors of buildings by converting solar radiation into heat, and virtually eliminates E. coli bacteria living ...

Quantum dot white LEDs achieve record efficiency

July 12, 2018

Researchers have demonstrated nanomaterial-based white-light-emitting diodes (LEDs) that exhibit a record luminous efficiency of 105 lumens per watt. Luminous efficiency is a measure of how well a light source uses power ...

How gold nanoparticles could improve solar energy storage

July 12, 2018

Star-shaped gold nanoparticles, coated with a semiconductor, can produce hydrogen from water over four times more efficiently than other methods—opening the door to improved storage of solar energy and other advances that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.