Using water molecules to read electrical activity in lipid membranes

April 3, 2018, Ecole Polytechnique Federale de Lausanne
EPFL researchers were able to map out in real time how charges are transported across and along membranes simply by observing the behavior of adjacent water molecules. Credit: Jamani Caillet/EPFL

Every human cell is encased in a five-nanometer-thick lipid membrane that protects it from the surrounding environment. Like a gatekeeper, the membrane determines which ions and molecules can pass through. In so doing, it ensures the cell's well-being and stability and allows it to communicate via electrical signals.

Researchers from the Laboratory for fundamental BioPhotonics (LBP) in EPFL's School of Engineering were able to track these moving charges in real time in a completely non-invasive manner. Rather than observing the membranes themselves, they looked at the surrounding water molecules, which, in addition to keeping the membrane intact, change orientation in the presence of electrical charges. So by 'reading' their position, the were able to create a dynamic map of how charges are transported across a .

The researchers' method has just been published in the journal Proceedings of the National Academy of Sciences (PNAS). It could shed light on how ion channels function, along with other processes at work in membranes. This clinically viable method could potentially also be used to directly track ion activity in neurons, which would deepen researchers' knowledge of how nerve cells work. "Water molecules can be found wherever there are lipid membranes, which need these molecules to exist," says Sylvie Roke, head of the LBP. "But until now, most studies on membranes didn't look at these molecules. We've shown that they contain important information."

The researchers did this by using a unique second-harmonic microscope that was invented at the LBP. The imaging efficiency of this microscope is more than three orders of magnitude greater than that of existing second-harmonic microscopes. With this microscope, the researchers obtained images of water molecules at a time scale of 100 milliseconds.

To probe the ' hydration, the researchers combine two lasers of the same frequency (femtosecond pulses) in a process that generates photons with a different frequency: this is known as second-harmonic light. It is generated only at interfaces and reveals information on the orientation of water molecules. "We can observe what's happening in situ, and we don't need to modify the environment or use bulky markers like fluorophores that would disturb ' movement," says Orly Tarun, the publication's lead author.

With this method, the researchers observed charge fluctuations in membranes. Such fluctuations were previously unknown and hint at much more complex chemical and physical behavior than is currently considered.

Explore further: Artificial bio-inspired membranes for water filtration

More information: Orly B. Tarun el al., "Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1719347115

Related Stories

Artificial bio-inspired membranes for water filtration

March 26, 2018

Access to clean drinking water is considered to be one of the main challenges of the 21st Century, and scientists have just opened a path to new filtration processes. Inspired by cellular proteins, they have developed membranes ...

Flipping lipids for cell transport-tubules

March 29, 2018

Researchers are getting closer to understanding the molecular processes that cause parts of cell membranes to morph into tiny tubes that can transport molecules in and out of cells.

Water molecules favor negative charges

July 16, 2014

(Phys.org) —In the presence of charged substances, H2O molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. EPFL researchers have published a study on the subject ...

Recommended for you

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

Placing atoms for optimum catalysts

October 18, 2018

Fuels, plastics, and other products are made using catalysts, materials that drive chemical reactions. To design a better catalyst, scientists must get the right atoms in the right spot. Positioning the atoms can be difficult, ...

A chemical criterion for rating movies

October 18, 2018

A measurable criterion now exists for determining the age rating of films. A group of scientists at the Max Planck Institute for Chemistry in Mainz has found that the concentration of isoprene in cinema air correlates with ...

Chemists test a new nanocatalyst for obtaining hydrogen

October 17, 2018

A chemist from RUDN was the first to use catalysts with ruthenium nanoparticles to obtain hydrogen under the influence of visible light and UV radiation. In the future, such catalysts may be used for large-scale production ...

Cellular clean-up crews linked to how body handles sugar

October 17, 2018

How our bodies handle glucose—the simple sugar that provides energy from the food we eat—appears to be intertwined with how cells keep themselves functioning normally, according to new University of Chicago research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.