How intestinal cells renew themselves

April 27, 2018, Heidelberg University

The intestine must be able to renew itself to recover from environmental insults like bacterial infections. This renewal is made possible by a small number of intestinal stem cells which divide and produce daughter cells throughout their lives. The daughter cells differentiate into highly specialised gut cell types. Researchers at Heidelberg University have studied these processes in the fruit fly and gained new insights into the role of centromeric proteins that largely regulate cell division. The studies reveal that these proteins also play an important part in cell differentiation and tissue renewal.

The researchers at the Centre for Molecular Biology of Heidelberg University (ZMBH) investigated stem cells in Drosophila melanogaster – the fruit fly – midgut, which is functionally and structurally similar to the human intestine. Here, the divide asymmetrically: whereas one daughter cell remains undifferentiated and continues to divide, the other cell differentiates and loses its ability to divide. The Heidelberg study was based on the observation that centromeric proteins, which are essential for actively dividing cells, were also detectable in that are no longer dividing.

Dr. Ana García del Arco from the research team led by Prof. Dr. Sylvia Erhardt discovered that centromeric proteins are also passed on asymmetrically: whereas a protein called CENP-C remains in the stem cells of the intestines and cannot be detected in differentiating cells, the protein CENP-A is found in both the differentiating and the undifferentiated stem cells. However, the daughter cells inherit only newly synthesised proteins, whereas the pre-existing proteins remain in the stem cells. Prof. Erhardt's team was also able to show that CENP-A and its interacting partner CAL1 are essential for the survival of and are required for regeneration signalling to the .

The study carried out in cooperation with Prof. Dr. Bruce Edgar of the University of Utah in Salt Lake City (USA) also uncovered that CENP-A and CAL1 play a role in tissue renewal by regulating highly specialised cell cycles that do not involve cell division. According to Prof. Erhardt, equivalent proteins found in humans are often misexpressed in human tumours. "Future studies need to explore the newly discovered function and asymmetrical inheritance of centromeric proteins to gain a better understanding of these factors in the development of differentiated tissue, , and cancer formation," stresses the researcher.

The results of the research were published in the journal Cell Reports.

Explore further: Protein can slow intestinal tumor growth

More information: Ana García del Arco et al. In Vivo Analysis of Centromeric Proteins Reveals a Stem Cell-Specific Asymmetry and an Essential Role in Differentiated, Non-proliferating Cells, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.01.079

Related Stories

Protein can slow intestinal tumor growth

April 19, 2018

A new mechanism for regulating stem cells in the intestine of fruit flies has been discovered by researchers at Stockholm University. In addition, it was discovered that a certain protein can slow the growth of tumours in ...

It's all about the (stem cell) neighborhood

April 9, 2018

Stem cells have the ability to develop, or differentiate, into the many cell types in the body. They also serve as a repair system to replace aged or damaged cells. With their regenerative abilities, stem cells offer enormous ...

Structure of a stem cell niche

March 1, 2018

Stem cells—specialized cells that can self-renew and generate functional cells—maintain adult tissues. They reside in a specialized microenvironment, known as a niche, that regulates their self-renewal and activities. ...

An evolutionary breakpoint in cell division

July 31, 2017

Japanese researchers from Osaka University have discovered that the interaction between two proteins, M18BP1/KNL2 and CENP-A, is essential for cell division in various species except for mammals including human.

Recommended for you

Activating a new understanding of gene regulation

November 19, 2018

Regulation of gene expression—turning genes on or off, increasing or decreasing their expression—is critical for defining cell identity during development and coordinating cellular activity throughout the cell's lifetime. ...

Researchers discover a new gear in life's clock: Vitamin D

November 19, 2018

New research from Portland State University finds vitamin D, or a lack thereof can trigger or suspend embryonic development in a species of fish. The study also provides evidence suggesting the vitamin is critical to the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.