Researchers analyze genome of deadly, drug-resistant pathogen

April 3, 2018, American Society for Microbiology

Infections by microbes like bacteria and fungi that don't respond to available antimicrobial treatments pose an increasingly dangerous public health threat around the world. In the United States alone, such infections kill 23,000 people annually. To better understand the molecular drivers behind resistance, researchers at the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, recently conducted a whole-genome analysis of an unusual bacterial strain cultured from a patient in the United States. Their results are published this week in mBio, an open-access journal of the American Society for Microbiology.

That strain, an isolate of Klebsiella pneumoniae, was cultured from a hip infection of a patient in Nevada who did not respond to treatment by antibiotics and died in 2016. The microbe is one of the first K. pneumoniae reported to the CDC that was resistant to all 26 antibiotics available for treatment, says Tom de Man, a bioinformatics expert at the CDC who led the study. Bacteria and other pathogens can develop resistance to drugs after repeated exposure, which means that increasing use of these treatments can actually make surviving strains stronger.

"The right drug at the right dose, taken for the right duration, is life-saving," says Alison Halpin, a molecular epidemiologist at the CDC whose lab produced the study. "But overuse can lead to adverse advents including the development of resistance."

De Man and his collaborators identified four genes known to confer resistance to beta-lactams, a family of often used to treat gram-positive and gram-negative infections. Penicillin-derived drugs, for example, are beta-lactams. Two of those genes were found on the chromosome, which means they were in the inheritable genetic material of the microbe. Two were found on plasmids, which are round bits of DNA that easily transfer from germ to germ and are often responsible for resistance. Other genes identified in the analysis are associated with resistance to fosfomycin, tetracyclines, and other antibiotics.

The isolate at the center of the new study belongs to a strain type that has spread around the world. Plasmids identified in the study also suggested this microbe may be related to resistant bacteria that have been reported in other countries including China, Nepal, India, and Kenya—clues that give the researcher a sense of where the isolate may have originated.

The genomic analysis will provide workers with better information about resistant infections, says de Man. Knowledge about which strains have which genes can help guide the development of more precise tests that can be used at hospitals and health centers. "We can find new resistance mechanisms," he says. Tests informed by genome-wide analyses may help epidemiologists recognize and contain before they spread to other patients. Though it's not possible now, in the future genomic information might help guide treatment decisions and strategies.

"We will likely know from this information which drugs work and which do not work," de Man says.

In the last two years, the CDC has established a network of laboratories across the United States that track the emergence and spread of resistant pathogens like K. pneumoniae. Those centers are designed to quickly identify dangerous microbes with the goal of stopping transmission as quickly as possible, says Halpin. However, the threat of isn't going away, and responding to it will require a global effort.

"Bacteria are going to continue to evolve," says Halpin. "We cannot stop because it's part of biology. But we do want to slow it."

Explore further: Compound scores key win in battle against antibiotic resistance

Related Stories

Antibiotic-resistant plasmids flourish in hospital plumbing

February 6, 2018

Antibiotic-resistant organisms can be found in multiple locations in a hospital - on countertops and doorknobs, on computers and in sinks, and even inside the plumbing. To better understand how these organisms spread, investigators ...

Recommended for you

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

Custom circuits for living cells

September 24, 2018

A team of Caltech researchers has developed a biological toolkit of proteins that can be assembled together in different ways, like Legos, to program new behaviors in cells. As a proof-of-concept, they designed and constructed ...

Birds' voiceboxes are odd ducks

September 24, 2018

Birds sing from the heart. While other four-limbed animals like mammals and reptiles make sounds with voiceboxes in their throats, birds' chirps originate in a unique vocal organ called the syrinx, located in their chests. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.