Finding galaxies with active nuclei

April 27, 2018, Harvard-Smithsonian Center for Astrophysics
Finding galaxies with active nuclei
The Hubble image of a galaxy spotted by Spitzer's IRAC infrared camera to be variable, probably because it harbors an active galactic nucleus. IRAC infrared surveys taken over a decade have spotted about 800 previously unknown AGN. Credit: NASA/Hubble; Polimera et al. 2018

The nuclei of most galaxies host supermassive black holes with millions or even billions of solar-masses of material. Material in the vicinity of such black holes can accrete onto a torus of dust and gas around the black hole, and when that happens the nuclei radiate powerfully across the full spectrum. These active galactic nuclei (AGN) are among the most dramatic and interesting phenomena in extragalactic astronomy, and puzzling as well. Exactly what turns the accretion on or off is not understood, nor is how the associated processes produce the emission, generate jets of particles, or influence star formation in the galaxy.

Because AGN play an important role in the evolution of , astronomers are studying galaxies with AGN at cosmological distances. It is in earlier epochs of the universe, about ten billion years after the big bang, when the most significant AGN fueling is thought to occur. But AGN at these distances are also faint and more difficult to find. Historically, they have been spotted by their having very red colors due to heavy dust obscuration, characteristic emission lines (signaling very hot gas), and/or their variability.

CfA astronomers Matt Ashby, Steve Willner and Giovanni Fazio and two colleagues used deep infrared extragalactic surveys taken over 14 years by the IRAC instrument on the Spitzer Space Telescope to search for distant AGN. The various surveys in the archive repeatedly scanned different portions of the sky over as many as eleven epochs in their efforts to peer deeper and farther into the cosmos, and the multiple observations allow spotting variable sources. The astronomers found almost a thousand infrared-variable galaxies in these surveys, about one percent of all the galaxies recorded. They estimate that about eighty percent of these variable sources are AGN, the others being due either to supernovae or spurious data. The variability had not been seen in studies at other wavelengths because of the heavy obscuration around the and/or the weakness of X-ray emission; the infrared can peer through the obscuring dust. The team examined Hubble images of the sources and finds that a majority show indication of disruption, perhaps from a galaxy-galaxy collision. Their results suggest that mid-infrared variability identifies a unique population of galaxies with AGN.

Explore further: Obscured supermassive black holes in galaxies

More information: Mugdha Polimera et al. Morphologies of mid-IR variability-selected AGN host galaxies, Monthly Notices of the Royal Astronomical Society (2018). DOI: 10.1093/mnras/sty164

Related Stories

Obscured supermassive black holes in galaxies

May 16, 2017

Most if not all galaxies are thought to host a supermassive black hole in their nuclei. It grows by accreting mass, and while feeding it is not hidden from our view: it generates X-ray emission and ultraviolet that heats ...

Radio galaxies in the distant universe

June 26, 2012

(Phys.org) -- For over a decade astronomers have been probing a region of the northern sky, not far from the handle of the Big Dipper, that is relatively free of bright stars and the diffuse glow of the Milky Way. The scientists ...

Understanding star-forming galaxies

June 5, 2017

The more stars a typical spiral galaxy contains, the faster it makes new ones. Astronomers call this relatively tight correlation the "galaxy main sequence." The main sequence might be due simply to the fact that galaxies ...

SOFIA finds cool dust around energetic active black holes

June 14, 2017

Researchers at the University of Texas San Antonio using observations from NASA's Stratospheric Observatory for Infrared Astronomy, SOFIA, found that the dust surrounding active, ravenous black holes is much more compact ...

Star formation near supermassive black holes

June 22, 2015

Most if not all galaxies are thought to host a supermassive black hole in their nuclei, a finding that is both one the most important and amazing in modern astronomy. A supermassive black hole grows by accreting mass, and ...

Recommended for you

Superflares from young red dwarf stars imperil planets

October 18, 2018

The word "HAZMAT" describes substances that pose a risk to the environment, or even to life itself. Imagine the term being applied to entire planets, where violent flares from the host star may make worlds uninhabitable by ...

Blazar's brightness cycle confirmed by NASA's Fermi mission

October 18, 2018

A two-year cycle in the gamma-ray brightness of a blazar, a galaxy powered by a supermassive black hole, has been confirmed by 10 years of observations from NASA's Fermi Gamma-ray Space Telescope. The findings were announced ...

Astronomers catch red dwarf star in a superflare outburst

October 18, 2018

New observations by two Arizona State University astronomers using the Hubble Space Telescope have caught a red dwarf star in a violent outburst, or superflare. The blast of radiation was more powerful than any such outburst ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.